CCM Boost变换器输出电容ESR和C的在线监测研究文献综述

 2022-11-06 10:44:33

摘要:电解电容是电源系统中最易失效的元件,在线监测其等效串联电阻(Equivalent Series Resistance, ESR)和电容值(Capacitance, C)的变化十分关键。本文提出了一种新的非侵入式在线监测连续导通模式(Continuous Conduction Mode, CCM) Buck变换器输出电容ESR和C的方法。通过分析输出电压交流分量,建立了ESR和C的实时在线计算模型。该方案无需电流传感器,仅采样PWM信号和输出电压,就可监测不同工作状态下的ESR和C,完成一台监测系统原理样机并进行实验,实验结果验证了所提方法的有效性。

关键词:电解电容,ESR和C,在线监测,Buck变换器

由于具有效率高、体积和重量小等优点,以电力电子变换器为核心的开关电源系统,在工农业生产、交通运输、航空航天和国防等方面应用十分广泛。电解电容是开关电源中寿命最短的元器件,在使用过程中,随着电解液的挥发,电容值(Capacitance, C)会逐渐降低,而等效串联电阻(Equivalent Series Resistance, ESR)逐渐增大。一般而言,同样温度条件下,当容值减小为初始值的80%,或ESR增大为初始值的2-3倍时,即可认为该电容已失效[1-3]。因此,监测电解电容的ESR和C等参数并预测其寿命非常重要。

国内外学者近年来对开关电源中电解电容的参数监测作了一定的研究,主要可分为两类,一为离线式。将电解电容与电阻及正弦交流电源串联,通过离散傅里叶变换,分别得到电容电压及电流的幅值和相位,根据其相量关系计算ESR和C[4-5]。文献[6]利用信号发生器输出一定频率的正弦交流信号驱动RC串联网络,根据交流电压及电容电压幅值,通过牛顿-拉夫逊法计算得到ESR和C。文献[7]提出用正弦脉宽调制(Sinusoidal Pulse Width Modulation, SPWM)信号驱动Buck变换器,通过检测电容电压和电流,利用离散傅里叶变换得到低频正弦信号的幅值和相位计算ESR。

二为在线式。文献[8]认为,在低频和高频段,阻抗中的C和ESR分别占主导地位,根据工频和开关频率下的电容纹波电压和电流有效值之比,近似可得开关频率下的ESR和工频下的C。文献[9-13]利用变换器工作时电解电容的电压和电流幅值直接相除或通过快速傅里叶变换(Fast Fourier Transformation, FFT)得到ESR。文献[14]监测电容电压和电流,通过计算电容的损耗得到ESR。文献[15]利用希尔伯特变换(Hilbert Transform, HT)和经验模态分解(Empirical Mode Decomposition,EMD)方法分析电容纹波电压和电流,进而得到ESR的实时变化情况。在一定条件下,开关电源中的电感电流纹波值可视为一个常数,因此电容纹波电压的变化反映了ESR的变化情况,据此可以监测电容是否失效[16]。电流模式控制变换器中,通常需要检测开关管电流,利用该电流并结合电容纹波电压,经计算可得电容ESR,文献[17]对此作了详细分析。文献[18]利用Boost变换器输入电流和输出纹波电压经DSP计算得到ESR和C。文献[19]根据电感电流计算电容电流,结合电容纹波电压,利用卡尔曼滤波算法分别得到ESR和C。文献[20]采用热老化试验建立电容量C的物理模型,当C减小至失效阈值即判断电容失效。文献[21]对于DSP控制的三相AC/DC PWM变换器,提出一种注入低频电流谐波,采样直流母线电压和输入电流,通过递归最小二乘算法(Recursive Least Squares, RLS)计算ESR的方法。文献[22]中,通过检测电容内部气压和温度算得电解液体积,进而得到ESR。

相比于离线,在线式监测无须停止设备运行,能够反映不同工作条件下的电容参数变化情况,因此更具有研究价值。上述在线式方法除电流模式控制可以利用现有的开关管电流检测信号外,需要增加电流传感器以检测电容、电感等电流。

针对CCM Buck变换器,本文提出了一种新的非侵入式在线监测方法。无需检测电流,仅需开关周期中两个特定时刻的电容电压,结合占空比等参数,即可得到ESR和C。详细分析了电容纹波电压与电路其他参数的关系,据此建立了ESR和C的计算模型。设计了触发信号生成电路和隔离放大电路,以微控制器为核心,编写计算程序,完成了在线监测系统的设计。制作原理样机并进行了实验验证。

  1. Ma H, Wang L G. Fault diagnosis and failure prediction of aluminum electrolytic capacitor in power electronic converters[C]. Proceedings of IEEE Conference on IECON, Raleigh, 2005.
  2. Aluminum Electrolytic Capacitors-Precautions and Guidelines. Nippon Chemi-con, Tokyo, Japan: 3-10. CAT. No. E1001H.
  3. Perisse F, Venet P, Rojat G, Retif J M. Simple model of electrolytic capacitor taking into account the temperature and aging time[J]. Electrical Engineering, 2006, 88: 89-95.
  4. Amaral A M R, Cardoso A J M. A simple offline technique for evaluating the condition of aluminum electrolytic capacitors[J]. IEEE Trans. Industry Electron, 2009, 56(8): 3230-3237.
  5. Amaral A M R, Cardoso A J M. An automatic technique to obtain the equivalent circuit of aluminum electrolytic capacitors[C]. Proceedings of IEEE Conference on IECON, Orlando, FL, 2008.
  6. Amaral A M R, Cardoso A J M. Using Newton-Raphson Method to estimate the condition of aluminum electrolytic capacitors[C]. Proceedings of IEEE Conference on ISIE, Vigo, 2007.
  7. Amaral A M R, Cardoso A J M. Using a sinosoidal PWM to estimate the ESR of aluminum electrolytic capacitors[C]. Proceedings of IEEE Conference on POWERENG, Lisbon, 2009.
  8. Imam A M, Divan D M, Harley R G, Habetler T G. Real-time condition monitoring of the electrolytic capacitors for power electronics applications [C]. Proceedings of IEEE Conference on APEC, Anaheim, CA, USA, 2007.
  9. Amaral A M R, Cardoso A J M. Fault Diagnosis on switch-mode power supplies operating in DCM [C]. Proceedings of IEEE Conference on PEMD, 2004.
  10. Lahyani A, Venet P, Grellet G, Viverge P J. Failure prediction of electrolytic capacitors during operation of a switch mode power supply[J]. IEEE Trans. Power Electron, 1998, 13(6): 1199-1207.
  11. Anderson J M, Cox R W, Noppakunkajorn J. An on-line fault diagnosis method for power electronic drives [C]. Proceedings of IEEE Conference on ESTE, Alexandria, VA, 2011.
  12. Sankaran V A, Rees F L, Avant C S. Electrolytic capacitor life testing and prediction[C]. Proceedings of IEEE Conference on IAS, New Orleans, LA, 1997.
  13. Amaral A M R, Cardoso A J M. State condition estimation of aluminum electrolytic capacitors used on the primary side of ATX power supplies[C]. Proceedings of IEEE Conference on IECON, Porto, 2009.
  14. Vogelsberger M A, Wiesinger T, Ertl H. Life-cycle monitoring and voltage-managing unit for DC-link electrolytic capacitors in PWM converters[J]. IEEE Trans. Power Electron, 2011, 26(2): 493-503.
  15. Spanik P, Frivaldsky M, Kanovsky A. Life Time of the Electrolytic Capacitors in Power Applications[C]. Proceedings of IEEE Conference on ELEKTRO, Rajecke, Teplice, 2014.
  16. Shi Z Y, Lu Y D, Ning T, Li M Q, Feng J D, Zhou Z W. The Real-time Fault Diagnosis of Electrolytic Filter Capacitors in Switching Mode Power Supply [C]. Proceedings of IEEE Conference on IPFA, Suzhou, 2013.
  17. Pang H M, Bryan P M H. A life prediction scheme for electrolytic capacitors in power converters without current sensor[C]. Proceedings of IEEE Conference on APEC, Palm Springs, CA, 2010.
  18. Buiatti G M, Martín-Ramos J A, Garcia C H R, Amaral A M R. An Online and Noninvasive Technique for the Condition Monitoring of Capacitors in Boost Converters[J]. IEEE Trans. Instrumentation and Measurement, 2010, 59(8): 2134-2143.
  19. Abdennadher K, Venet P, Rojat G, Retif J.-M. A Real Time Predictive Maintenance System of Aluminium Electrolytic Capacitors Used in Uninterrupted Power Supplies[C]. Proceedings of IEEE Conference on IAS, Edmonton, Alta, 2008.
  20. Kulkarni C S, Celaya J R, Biswas G, Goebel K. Physics based Modeling and Prognostics of Electrolytic Capacitors[C]. Proceedings of AIAA, 2012.
  21. Pu X S, Nguyen T H, Lee D C, Lee K B. Fault Diagnosis of DC-Link Capacitors in Three-Phase AC/DC PWM Converters by Online Estimation of Equivalent Series Resistance[J]. IEEE Trans. Industrial Electronics, 2013, 60(9): 4118-4127.
  22. Gasperi M L. Life Prediction Modeling of Bus Capacitors in AC Variable-Frequency Drives[J]. IEEE Trans. Industry Applications, 2005, 41(6): 1430-1435.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版