- 文献综述(或调研报告):
[1] Fan, L., C. Wang, et al. (2013). Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. Journal of Power Sources 234: 154-174.
[2] Liu, Q., H. Qin, et al. (2012). Advanced electrolyte-free fuel cells based on functional nanocomposites of a single porous component: analysis, modeling and validation. Rsc Advances 2(21): 8036.
[3] Ma, Y., X. Wang, et al. (2012). Enhanced ionic conductivity in calcium doped ceria - Carbonate electrolyte: A composite effect. International Journal of Hydrogen Energy 37(24): 19401-19406.
[4] Qin, H., B. Zhu, et al. (2012). Integration design of membrane electrode assemblies in low temperature solid oxide fuel cell. International Journal of Hydrogen Energy 37(24): 19365-19370.
[5] Wang, X., Y. Ma, et al. (2012). State of the art ceria-carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs). International Journal of Hydrogen Energy 37(24): 19417-19425.
[6] Zhao, Y., C. Xia, et al. (2012). Validation of H /O2- conduction in doped ceria–carbonate composite material using an electrochemical pumping method. International Journal of Hydrogen Energy 37(15): 11378-11382.
[7]Zhao, Y., Z. Xu, et al. (2013). Oxide ion and proton conduction in doped ceria–carbonate composite materials. International Journal of Hydrogen Energy 38(3): 1553-1559.
[8] Zhu, B., R. Raza, et al. (2012). A new energy conversion technology joining electrochemical and physical principles. Rsc Advances 2(12): 5066.
[9] Zhu, B. (2011). Nanocomposites for Advanced Fuel Cell Technology. Journal of Nanoscience and Nanotechnology 11(10): 8873-8879.
