传感器网络的目标跟踪算法实现文献综述

 2022-11-20 15:27:36
  1. 文献综述(或调研报告):

目标跟踪就是通过对摄像机获得的图像序列进行分析,计算出目标在每帧图像上的二维位置坐标,并根据不同的特征值,将图像序列中不同帧之间同一运动目标关联起来,得到各个运动目标完整的运动轨迹,即在连续的图像序列中建立运动目标的对应关系。

目前,国内外学者提出了许多不同的跟踪算法和跟踪系统,可以按照不同的划分依据对跟踪算法进行不同的分类:就跟踪对象而言,可以分为车辆跟踪、人体跟踪或人体部分跟踪(如跟踪手、脸、头和脚等身体部分)等;就跟踪目标个数而言,可以分为单目标跟踪和多目标跟踪;就跟踪视角而言,可以分为单摄像机的单一视角、多摄像机的多视角和全方位视角;还可以通过摄像机类型(红外摄像机、可见光摄像机)、摄像机状态(运动、固定)、跟踪空间(二维、三维)和跟踪环境(室内、室外)等方面来进行分类。

针对不同的研究对象有不同的跟踪算法,主要有以下几种跟踪算法:

1) 基于特征的跟踪

为了实现目标跟踪,没有必要跟踪整个目标区域,只要跟踪目标的某些显著特征,就可以实现对整个运动目标的跟踪。这些显著特征可以是目标的质心,也可以是目标上的任意一点,只要这些特征具有高度的稳定性,不易受外界因素如光照强度变化、噪声等因素的干扰,对目标大小、位置、方位不敏感即可。为了提高跟踪的鲁棒性,往往不只选一个特征,而是选一组特征,在一般情况下,可利用的特征有:角点、直边缘等局部特征和质心、表面积和惯量矩等全局特征,在实际应用中,采用什么特征主要取决于目标具有哪些特征以及算法实现的具体要求。

基于特征的目标跟踪方法利用跟踪特征点位置的变化来跟踪目标,首先,从图像序列中提取目标的显著特征,如拐点、质心或有明显标记区域对应的点、线、曲线等;然后在连续图像帧之间寻找特征的对应关系,即进行特征匹配,最后计算运动信息,从而通过对特征的跟踪来完成对整个目标的跟踪。Polana将每个行人用一个矩形框封闭起来,封闭框的质心被选作跟踪的特征,在跟踪过程中,如果两人出现相互遮挡的情况,只要能区分质心的速度,就能成功地完成人体跟踪。

这种方法的优点是:即使场景中出现部分遮挡情况,只要目标的一些特征可见,仍可以保持对运动目标的跟踪。由于只跟踪已选择的显著特征,上一帧目标的特征在下一帧图像中的可能匹配数目大大小于相关跟踪算法,处理的数据量小,并且由于特征的精心选取,使得在光照和目标几何形状发生变化时,也能进行目标跟踪,具有一定的鲁棒性。特征的选取对整个跟踪算法十分重要,关系到整个跟踪系统的可靠性和跟踪精度,它应具有对目标大小、位置、方向和照度变化不敏感的特点,如灰度局部极大值点、跟踪。其不足是要求独立而准确地初始化边界,而这在实际应用中往往很难实现。

2) 基于相关的跟踪

相关跟踪法,又叫模板匹配法,其主要思想是:将目标的基准图像(模板)在实时图像中以不同的偏移值进行位移,然后根据一定的相似性度量准则对每一个偏移值下重叠的两个图像进行处理,计算两者的相关值,根据最大相关值确定实时图像中目标的位置。简单地说,就是在当前帧中寻找与上一帧目标相关性最大的区域。

相关跟踪法具有很强的噪声抑制能力,可以在很小的信噪比条件下工作,它具有对有关目标的知识要求甚少、定位精度高、跟踪距离远、可靠性高和较强的局部抗干扰能力等优点,而且计算简单,易于编程和硬化。由于它只利用图像间的灰度相关性作为区域相似性的判断依据,对几何和灰度畸变十分敏感,光照强度变化或目标运动姿态发生变化等都将对算法产生较大的影响,计算量偏大。而且往往不能充分利用目标的几何特性,易产生积累误差,它适用于实时图像与参考图的产生条件较为一致,目标尺寸变化很小,景物与目标的相关性不强的场合。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版