高管薪酬影响因素——多层线性模型法外文翻译资料

 2022-12-12 17:28:21

Determinates of Executive Compensation: A Hierarchical Linear Modeling Approach

Owen P. Hall Jr., Kenneth Ko

HIERARCHICAL LINEAR MODELING

Most classical analytic techniques (e.g., OLS) are based on the assumption of independent observations. This assumption is violated when dealing with nested data structures. Typically, managers drawn from a given firm will be more homogeneous than managers that were sampled from the overall population. Managers from the same firm, on some dimensions, tend to exhibit similar characteristics (e.g., organizational background) which suggest that the observations are not fully independent. Therefore, using ordinary least squares regression in these cases tends to generate standard errors that are too small. This leads to a higher probability of concluding that relationships exist between the predictor variables and target variable compared with the case involving independent observations. Two classic approaches in addressing nested data are disaggregation and aggregation. In the former case (disaggregation) firm performance data (Level 2) is assigned to each manager (Level 1). Unfortunately, this results in violating the independence observations assumption since all mangers would be assigned the firm performance scores. In the latter approach (aggregation) average manager characteristics are assigned to the firm. This assignment results in two potentially serious problems: 1) Upwards of 90 percent of individual variability on the target variable is lost (Bryk, 1992); and 2) The target variable can change significantly from individual achievement to average firm achievement.

Furthermore, both analysis strategies limit the ability to separate out manager and firm effects on the target variable (i.e., total executive compensation). Hierarchical linear modeling (HLM) is a relatively new analytical technique which is designed to address problems involving organizational nesting (Pan, 2008; Lee, 2003; Raudenbush, 2002). Many HLM applications consist of a two-level arrangement such as found in this study. However, three and four level configurations are also possible. At Level 1, the parameters (intercept and slopes) representing the relationship between the Level 1 predictors and target variable are estimated (within). At Level 2, the intercepts and slopes for each Level 1 parameter are specified (between). The Level 2 process is analogous to the cross-level main effects model. To further illustrate this process consider a sales organization consisting of three regions each reporting to the general manager. The primary interest of each regional manager is the sales variance within their region while the focus of the general manager is the sales variance between each region.

The basic two-level hierarchical linear model can be characterized as follows:

Level 1 (examples: managers, students)

Y = B0 B1*X1 B2*X2 hellip; Bn*Xn R

Level 2 (examples: firms, schools)

B0 = G00 G01*W1 G02*W2 hellip; G0m*Wm U0

B1 = G10 G11*W1 G12*W2 hellip; G1m*Wm U1

Bn = Gn0 Gn1*W1 Gn2*W2 hellip; Gnm*Wm Un

where: Y is the target variable of interest, X1, X2 hellip; Xn are the individual (level 1) and W1, W2hellip; Wm are the firm (level 2) predictor variables. The error terms R, U0, U1, hellip; Un represent the residual variance for each equation while B0, B1, B2, Bn are the Level 1 and G00, G10, Gn0, Gnm are the Level 2 intercepts and slopes, respectively. A solution to the above equations is developed simultaneously by combining the two sets of equations (Level 1 and Level 2) into a single mixed model. HLM offers three distinct advantages over the use of traditional OLS in analyzing nested data structures.

bull; HLM separates out the target variable variance into within and between components. Therefore the error terms are not systematically biased.

bull; HLM maximizes the use of the available information.

bull; HLM permits testing for cross-level effects.

One early HLM application in analyzing pay and performance relationships involved professional sports (Todd, 2005). Sports teams like management teams are hierarchical in nature. The results from this study, which linked salary with player experience and performance, revealed that intercepts and slopes varied considerably between teams. One of the advantages in analyzing sports teams in this regard is the availability of extensive individual performance data (e.g., RBI, ERA). Unfortunately, this is not the case for executive management teams. HLM has also seen application in the study of organizational behavior (Gavin, 2002). This study found that the overall leadership style of the organization (Level 2) can play a significant roll in moderating employee hostility (Level 1).

Table 1. Variable mnemonics and definitions

Variable Mnemonic

Definition

TComp

Total compensation of executive

Salary

Base salary of executive

Age

Executive age

Tenure

Number of years executive at current firm

Q

Tobinrsquo;s Q (Market value / replacement value)

ROE

Return o

剩余内容已隐藏,支付完成后下载完整资料


高管薪酬影响因素——多层线性模型法

Owen P. Hall Jr., Kenneth Ko

多层线性回归模型

大多数经典的分析方法(例如,回归分析)都是在独立观测假设的基础上。这种假设在处理嵌套的数据结构时并不成立。通常情况下, 从一个特定公司抽样出的管理人员要比从整体人口中选出的有更高的相似程度。同一家公司的管理者,在某些方面往往表现出相似的特征(例如,组织背景),这表明,此时的观测不是完全独立的。因此,在这些情况下使用普通的最小二乘回归法,往往会造成标准误差过小的情况。从而导致相比于独立观测,有很大概率得出预测变量和目标变量存在关联性的结论。在处理嵌套数据时有两个经典方法,分解和聚合。在前一种情况下(分解)公司绩效数据(二级回归)被平分在每个经理(一级回归)上。但是,这种分配的结果有悖于提出的独立性假设,因为所有的管理人员会均分公司绩效成绩。在后一种方法(聚合)中,经理特性的平均数被分配给公司。这种分配的结果有两个潜在的严重问题:1)百分之90以上目标变量将会失去个体差异(Bryk,1992);2)目标变量将会发生显著变化,由个人成就变为企业的平均水平。

此外,这两种分析方法限制了分离管理人员和公司影响的目标变量(即总经理薪酬)。分层线性回归模型(HLM)是一个相对较新的分析技术,其目的是解决涉及组织嵌套的问题(Pan,2008;Lee,2003;Raudenbush,2002)。许多多层回归模型都像本文一样都由两层模型所组成。但是,三层、四层的模型构造也是可能的。在一级回归中,参数(截距和斜率)将表示本层内预测变量和目标变量的大致关系(之内)。在二级回归中,每个一级回归的截距和斜率参数将被确切算出(之间)。二级回归的过程类似于跨层次主影响模型。为了进一步说明这个过程,假设一个由三个区域组成的销售机构,每个机构都向总经理报告情况。各个区域经理主要对其区域内的销售差异感兴趣,而总经理重视的是各个区域之间的销售差异。

基础的两层线性回归模型如下:

一级模型 (例如:管理人员,学生)

Y = B0 B1*X1 B2*X2 hellip; Bn*Xn R

二级模型 (例如:公司,学校)

B0 = G00 G01*W1 G02*W2 hellip; G0m*Wm U0

B1 = G10 G11*W1 G12*W2 hellip; G1m*Wm U1

Bn = Gn0 Gn1*W1 Gn2*W2 hellip; Gnm*Wm Un

其中,Y是研究的目标变量,X1,X2 hellip; Xn是个人预测变量(一级模型),W1, W2hellip; Wm是企业预测变量(二级模型)。误差项R,U0,U1,hellip; Un代表每个方程的剩余方差,而B0, B1,B2,Bn和G00,G10,Gn0,hellip; Gnm则分别是一级模型和二级模型的截距和斜率。将两组方程(一级模型和二级模型)合并为一个独立的混合模型则能同时得到上述方程的解。比传统的回归分析模型更好的是,多层线性回归模型在分析嵌套数据结构方面有三个不同的优点。

bull;多层线性回归模型将目标变量方差分为层内的和层间的,这样误差项就没有整体性的偏差。

bull;多层线性回归模型可以最大限度地利用有效信息。

bull;多层线性回归模型可以研究跨层次效应。

在早期的分析薪酬与绩效关系的多层线性回归模型应用中包括职业体育方面(Todd,2005),体育团队像管理团队一样被自然分层。关于薪酬与球员经验和成绩之间关系的研究结果表明,队与队之间数据的截距和斜率差别非常大。从这个方面分析体育团队有一个好处是有大量的可用个人绩效数据(例如,打击得分、投手个人得分率)。但是,高级管理人员团队并不适用这点。多层线性回归模型也被应用于组织行为学的研究。这项研究发现,组织的整体领导风格(二级回归)对缓和员工不良情绪有很大的影响(一级回归)。

表1:变量代码和定义

变量代码

定义

TComp

高管薪酬综合水平

Salary

高管基本薪酬

Age

高管年龄

Tenure

目前企业现有高管任期

Q

托宾Q值(企业市场价值/重置成本)

ROE

净资产收益率

Rev

总收入

CEO(1/0)

妇女或少数群体首席执行官

BOD(1/0)

妇女和少数群体占董事会成员30%

Min(1/0)

妇女和少数群体占董事会成员5%

Affirm(1/0)

公司实质上违反平权法案的行为

Manu(1/0)

制造业企业

Fin(1/0)

金融业/保险业企业

结果分析

最终版本的模型如下所示。在一级模型中,目标变量高管薪酬水平(INTcomp)是描述高管年龄和基本薪酬的函数。一级模型的系数由LNQ,Fin, Affirm 和 LNRev构成。

一级模型(高管)

Y (LNTComp) = B0 B1*(Age) B2*(LNSalary)

二级模型(企业)

B0 = G00 G01*(Affirm)

B1 = G10 G11 *(Fin) G12 * (LNQ)

B2 = G20 G21 * (LNRev)

表5:OLS回归和HLM回归的结果比较

变量

OLS-聚合*

OLS分解*

HLM

多项式系数

P值

多项式系数

P值

多项式系数

P值

Constant

0.429 a

0.352

-1.086 b

0.000

-0.7619 b

0.000

LNSalary

1.200 a

0.000

1.275 a

0.000

1.3961 b

0.000

Age

-0.030 a

0.000

-0.010 b

0.000

-0.0054 b

0.039

LNQ

0.273 a

0.000

0.225 a

0.000

0.0048 b

0.000

LNRev

0.182 a

0.000

0.166 a

0.000

0.0222 b

0.000

Affirm

-

-

-0.136 a

0.009

-0.1828 a

0.011

Fin

0.412 a

0.000

0.374 a

0.000

0.0066 b

0.000

* R2 = 0.617 (聚合), R2 = 0.637 (分解)

表5展示了OLS回归分析(聚合和分解)以及数据库多层线性模型分析的结果,数据显示了统计学上有显著性研究因素的斜率和P值。在用多层线性模型分析整体业绩过程中,遇到的一个问题是缺少合适的模型。在多层线性模型分析中,R2的值被多个方差分量影响。这种分组计算计算过程较为复杂,而且在一些情况下,计算结果可能为负值。通常,一个标准的OLS逐步回归分析最终的变量结合是基于优化的R2。目前的研究中有很多种可实现的多层线性模型的表示法。本研究所采取的方法是用显著性变量构建一个简单的多层线性模型,以减小聚合上的偏差,使用t检验来比较三个模型中的独立可变斜率。而表5中的下标(a,b)表示了当plt;0.05时,在一个指定行中的这些斜率是否有所不同。比如,斜率在聚合和分解OLS回归模型中的差异比在基本薪酬多层线性回归模型(LNSalary)中的差异更具有显著性。此外,两个OLS回归模型对企业绩效(LNQ)和企业总收入(LNRev)的影响显著地高于相应的多层线性回归模型的影响。表5中给出的整体结果体现了嵌套数据分析的作用。具体来看,多层次的斜率和截距在多层线性回归模型中可以随机地变动,从而得到更准确的系数。

表6:层次之间的相关性

第二层/第一层

Age

Tenure

LNSalary

LNRev

0.0307

-0.0419

-0.0509

ROE

0.0181

0.0116

-0.0044

LNQ

0.0111

-0.0414

-0.0068

表6说明了连续变量在回归模型各层之间的相关性。那些水平变量之间相对较小的系数能充分的表现出多重共线性的影响被削弱了。

表7:假设检验结果汇总

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[30712],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版