基于因子分析研究 房地产企业的内部控制效率外文翻译资料

 2023-01-12 09:24:11

基于因子分析研究

房地产企业的内部控制效率

原文作者 LI QINGDONG, CUI ZHIXIN 单位 Liaoning Shihua University

摘要:一开始,本文通过DEA方法研究45家中国房地产上市公司的运行效率。利用这些技术效率为变量和房地产企业的内部控制效率的因素进行分析。从而可以做出对中国房地产企业内部控制效率的综合评价。分析表明,在房地产企业的内部控制效率最高时只有一个或两个因素的水平是好的,这说明中国房地产企业综合效益的水平需要有待提高。

关键词:房地产企业; 内部控制效率; 因子分析;数据包络分析

随着房地产市场竞争越来越激烈,他们发现内部控制的效率直接关系到企业长期稳定的发展。当然,房地产企业具有较高的内部控制效率,使他们能够及时发现不足,并在优胜劣汰的市场环境中不断调整更合适的目标位置。因此,学者和研究人员不断研究企业内部控制效率这一主题。

结合当前行业中的研究成果,这篇文章选择2012年6月30日45中国房地产上市公司的数据进行分析。这些数据主要来自年报,东方财富,金融界网站。其创新之处主要在于投入产出效率被引入到企业内部控制的效率,再利用DEA和因子分析的方法得出45家中国企业内部控制效率的综合结果。

1 研究基于DEA房地产企业的投入产出效率

1.1 基本原理和DEA模型选择

数据包络分析(DEA的简称),这是由A.Charnes和WW Cooper在1978年提出来的,是一个基于概念的多重输入效率和基于效率的多路输出的综合评价方法(WEI,2004)。通过使用数学规划模型,从而可以较为准确地得到决策单元之间相对效率比较的数据结果(DMU的简称)。本文采用C2R模型来评价DMU的技术效率和规模效益。在DMU输出的前提下,致力于最少的资源。其具体模型如下:

其中,代表相对效率;并代表松弛变量;代表非阿基米德无穷小。利用这个模型,我们可以判断DMU是否有效。假设,,,是模型最佳结果,即:如果满足,则DMU是弱DEA;如果,那么DMU是有效DEA;如果,那么DMU是非DEA有效(CHENG amp; QUAN, 2010)。

1.2研究房地产企业的投入产出效率

本文研究了基于DMU运行效率的45家中国房地产上市企业。考虑到中国房地产企业的情况和取得数据的可能性,选择了具体的投入指标包括总资产,流动资产,总成本和总负债和产出指标包括净利润和总收入。使用DEAP2.1软件,主要得出综合技术效率、纯技术效率和规模效率的数据结果(见表1)。

根据表1的计算结果,我们可以看到,SHI LIAN DI CHAN,GUANG YU JI TUAN,CHANG CHUN JING KAI,CHUANG XING ZI YUAN和WAN YE QI YE达到最佳技术效率和规模效益;除了上述企业,WAN KE,BAO LI DI CHAN,RONG SHENG FA ZHAN,ZHONG GUAN CUN,BEI JING CHENG JIAN,DONG FANG YIN XING,YIN RUN TOU ZI和ZHAO SHANG DI CHAN达到最佳的纯技术效率。规模效率的变化情况:以68.89%规模报酬递减; 20%规模报酬递增;保持11.11%规模报酬不变。而效率的平均值为:技术效率值为0.593,纯技术效率值是0.803,刻度值的效率为0.748。

房地产企业的投入产出效率并不是最佳的,因为他们强调规模经济的效益。低水平技术效率导致高投入低产出,从而浪费了大量的人力和物力。效率是影响房地产企业的一个重要因素,尤其是技术效率起到了至关重要的作用。

2 分析关于内部控制效率的房地产开发企业

2.1样本和选取变量

主要选取上述45家房地产上市公司的数据为样本,根据房地产企业内部控制效率的因素选择了以下变量(见表2)。

2.2房地产企业内部控制效率的主成分分析

我们一定要检查样本的变量是否适合进行因子分析。通过KMO和巴特利特检查(见表3):KMO统计检验值是0.773;巴特利特球形度检验近似卡方值518.036较大;以及相关联的概率值小于0.05,小于显著水平0.000,所以变量适于因子分析(WEI,2004)。

从表4中可以明明白白的看出,第一主成分的初始特征值是6.861,解释的总方差变量42.882%;第二主成分的初始特征值是1.823,这解释了原变量总方差的11.395%;第三个主成分的初始特征值是1.458,这解释了原变量总方差的9.113%;第四个主成分的初始特征值是1.305,这也解释了原变量总方差的8.153%;第五个主成分的初始特性值是1.304,这解释原变量总方差的8.147%。从特征值来看,前5个主成分的累计方差贡献率为79.690%,这说明所有的基本信息(ZHANG,2008)。

凯瑟标准化的因子载荷矩阵正交旋转,使其系数值在0和1之间变动,从而得到一个更好的旋转分量矩阵(见表5)。

结合表5,可以清晰地看出,我们将从中提取五个主要成分:第一主成分被命名为内部控制环境,其中包括资产规模,企业文化建设,监事,风险警示板的内部控制活动和应对的年度报告策略,业绩评价的企业制度,董事会意见监事和完善的信息系统或没有有效的沟通;第二个主成分被命名为监控规模,其中包括监事会规模,董事会和独立董事比例的规模;第三个主成分被命名为技术效率,其中包括技术效率和第一大股东的比例;第四个主成分被命名为外部审计,其中包括会计师事务所进行年度审计和第二到第十大股东的比例之和的选择;第五个主成分被命名为管理结构,其中包括了董事长兼总经理。

根据成分得分系数矩阵(见表6),我们可以建立因子得分函数:

F1=0.055times;DEA 0.006times;DSJR 0.146times;QYJX 0.128times;XXXT 0.140times;QYWH 0.137times;JSNK 0.146times;JSYJ-0.003times;DSGM 0.088times;DLDS 0.088times;DYGD 0.143times;CWBB 0.123times;NBFX 0.034times;ESGD-0.011times;JSGM 0.006times;NBSJ 0.143times;ZCGM

F2=-0.148times;DEA-0.019times;DSJR-0.064times;QYJX 0.021times;XXXT-0.004times;QYWH-0.033times;JSNK-0.134times;JSYJ 0.432times;DSGM-0.419times;DLDS-0.229times;DYGD-0.036times;CWBB 0.046times;NBFX-0.038times;ESGD-0.406times;JSGM 0.018times;NBSJ-0.026times;ZCGM

F3=0.501times;DEA-0.011times;DSJR 0.002times;QYJX 0.076times;XXXT-0.021times;QYWH-0.064times;JSNK 0.026times;JSYJ 0.033times;DSGM-0.005times;DLDS-0.405times;DYGD 0.092times;CWBB-0.059times;NBFX 0.348times;ESGD-0.251times;JSGM 0.138times;NBSJ 0.041times;ZCGM

F4=-0.045times;DEA-0.095times;DSJR 0.012times;QYJX 0.092times;XXXT 0.004times;QYWH-0.041times;JSNK-0.071times;JSYJ-0.033times;DSGM 0.166times;DLDS 0.113times;DYGD 0.154times;CWBB-0.026times;NBFX 0.468times;ESGD 0.338times;JSGM-0.537times;NBSJ-0.063times;ZCGM

F5=-0.171times;DEA 0.661times;DSJR-0.049times;QYJX 0.104times;XXXT-0.073times;QYWH-0.046times;JSNK-0.057times;JSYJ 0.051times;DSGM 0.303times;DLDS-0.191times;DYGD 0.258times;CWBB 0.028times;NBFX 0.094times;ESGD 0.137times;JSGM 0.174times;NBSJ-0.049times;ZCGM

其中,F1,F2,F3,F4和F5分别代表内部控制环境,监控规模,技术效率,外部审计和管理结构。那些可以由原始数据计算得出(见表7),其数值反映了企业不同因素下的综合水平。

2.3 房地产企业内部控制效率的综合评价

基于主成分分析,可以清楚地看出,第一个到第五个主成分可以形容的41.111%,11.281%,9.971%,8.896%和8.432%的总方差贡献率和累计方差占79.69%。因此,我们可以构建的房地产企业内部控制的效率,通过主要因素方差贡献率作为权重综合评价函数:

F =(F1 * 0.41111 F2 * 0.11281 F3 * 0.09971 F4 * 0.08896 F5 * 0.08432)/ 0.7969

从以上结果来看,前五名大型房地产企业是JIN DI JI TUAN,ZHAO SHANG DI CHAN,WAN KE,SHOU KAI GU FEN和BAO LI DI CHAN;最后五位的企业是TIAN LUN ZHI YE, MIAN SHI GU FEN,DONG FANG YIN XING,YIN RUN TOU ZI和YI HUA DI CHAN;BAO LI DI CHAN和YI HUA DI CHAN在内部控制效率上存在很大的差距。

3 结论

对DEA效率的研究表明,企业效益总体水平并不好。具体情况:只有11.11%的房地产企业在输入和输出达到最佳状态的方面;68.89%的房地产企业是规模收益递减,由于缺乏技术水平和资源的严重浪费;20%房地产企业是在规模报酬递增,由于资金和物资短缺问题的阶段。

通过综合分析发现,在该公司的前企业内部控制效率的综合排名,在前面大多是在一个或两个因素。这显示在企业发展过程中起着重要的作用。但是我们还发现,一个企业只具有两个或三个因素中的前一个很大的作用,也就是说,不是所有的排名都在前面。这说明了中国房地产市场的发展在内部控制效率方面非常低。

通过对内部控制的效率,以房地产企业的综合分析,我们认为,为了提高房地产企业的内部控制的效率,可以从以下几个方面加以考虑。

首先,促进企业的技术水平,鼓励创新。随着产业集中度的不断增加,中国房地产上市公司应该朝着集团化技术效率的方向迅速发展和规模迅速扩大,要求企业从单一到多元化(KANG,2002年)的过渡。

其次,设置公平合理的权力结构,提高决策能力。在决策层面,复杂的公司结构,不利于及时准确的信息沟通。他们应该不断地调整自己,以提高决策能力。

第三,扩大独立董事的规模,并完善其系统,并提高其独立性。对于企业独立董事,企业应该增加成员。独立董事制度要完善,以确保每一个独立董事能够发挥的权利,并表达自己的意见。一些外部独立董事的加入可以使内部力量和外部力量之间的独立董事相互制约。

外文文献出处

LI QINGDONG,CUI ZHIXIN.Research on the Internal Controls Efficiency of the Real Estate Enterprise Based on Factor Analysis[J].International Business and Management,2012,5(2):37-43.

剩余内容已隐藏,支付完成后下载完整资料


International Business and Management

Vol. 5, No. 2, 2012, pp. 37-43

Research on the Internal Controls Efficiency

of the Real Estate Enterprise Based on Factor Analysis

Abstract: In the beginning, this paper researches on the operating efficiency of the 45 Chinese Real estate listed companies through DEA method. It could use technological efficiency of these as a variables and the internal controls efficiency of the real estate enterprise to do factor analyze. Thus, we can draw of comprehensive evaluation of internal control efficiency of the Chinese real estate enterprise. Analysis shows that at the top of internal control efficiency of the real estate enterprise is good only in one or two factor level, which is illustrated that the level of overall efficiency of the Chinese real estate enterprises need to be improved.

Key words: The real estate enterprise; Internal control efficiency; DEA; Factor analysis

With the real estate marketrsquo;s competition being fierce increasingly, they found that the internal control efficiency is directly related to the development of the enterprise in long-term and stable development. Of course, the real estate enterprises have high internal control efficiency, which they can discover shortages in time, and constantly adjust the more suitable target location in the market environment of survival of the fittest. Therefore, scholars and researchers constantly research on this subject of enterprise internal control efficiency.

Combining the current research achievements in the industries, this article selects data of 45 the Chinese real estate listed companies by June 30, 2012 to analyze. The data mainly come from annual report, eastern wealth and financial circles website. Its innovation mainly is that the input-output efficiency is introduced into the enterprise internal control efficiency, and then draws of comprehensive results of 45 Chinese enterprises internal control efficiency by the methods of DEA and factor analysis.

1. RESEARCH ON INPUT-OUTPUT EFFICIENCY OF THE REAL ESTATE ENTERPRISES BASED ON DEA

1.1 The Basic Principle and Selection of DEA Model

Data Envelopment Analysis (DEA for short), which was brought up in 1978 by A. Charnes and W. W. Cooper et al., is an evaluation method for efficiency of multiple inputs and multiple outputs based on the concept of relative efficiency (WEI, 2004). By using the mathematical programming models, it gets data results about relative efficiency comparisons among Decision Making Units (DMU for short). This paper uses the C2R model to evaluate the technological efficiency and scale efficiency of the DMU. On the premise of keeping at least DMU output, it devotes minimal resources. Its concrete model as follows:

Among them,represents relative efficiency;andrepresent slack variables;represents non-Archimedean infinitesimal. Using this model, we can tell whether effective DMU. Suppose,,,are the optimal solution inmodel, it can be as follows: If meet, then DMU is weak DEA efficient; If, then DMU is DEA efficient; If, then DMU is non-DEA effective(CHENG amp; QUAN, 2010).

1.2 Research on Input-Output Efficiency of the Real Estate Enterprises

This paper researches on the operating efficiency of 45 Chinese listed companies in the real estate enterprises which are as DMU. Considering situation of the Chinese real estate enterprises and the possibility of acquired data, it selects the concrete input indexes which include total assets, current assets, the total cost and the total liabilities, and output indexes which include the net profit and gross income. Using Deap2.1 software, it mainly receives the data result of comprehensive technical efficiency and pure technical efficiency and scale efficiency (see Table 1).

According to the calculated results of Table 1, we can see that SHI LIAN DI CHAN, GUANG YU JI TUAN, CHANG CHUN JING KAI, CHUANG XING ZI YUAN and WAN YE QI YE reached the optimum of technology efficiency and scale efficiencies; in addition to the above enterprises, they achieve optimal in terms of pure technical efficiency, which include WAN KE,BAO LI DI CHAN, RONG SHENG FA ZHAN, ZHONG GUAN CUN, BEI JING CHENG JIAN, DONG FANG YIN XING, YIN RUN TOU ZI and ZHAO SHANG DI CHAN. The changes of scale efficiency: 68.89% in decreasing returns to scale; 20% in increasing return to scale; 11.11% in constant return to scale state. Mean values of efficiency: technical efficiency value is 0.593,pure technical efficiency values is 0.803, efficiencies of scale values is 0.748.

Input-output efficiency of the real estate business is not optimal, because they emphasis on the efficiency of economies of scale. Low levels of technical efficiency lead to high input and low output, which waste a lot of human resources and material resources. Efficiency is an important factor in the impact of the real estate business, especially technical efficiency played a crucial role.

2. ANALYZE ON THE INTERNAL CONTROLS EFFICIENCY OF THE REAL ESTATE ENTERPRISE

2.1 Sample and Variable Design

The sample data is mainly the above 45 companiesrsquo; data as the basis, according to the factors of the real estate enterprise internal control efficiency selected the following variable (see Table 2).

2.2 The Principal Component Analysis of Internal Controls Efficiency of Real Estate Enterprise

We must check whether sample variable is suitable for factor analysis. Through the KMO and Bartlett inspection (see Table 3): KMO statistic test value is 0.773; Bartlett spherical degree test approximate chi-square value is 518.036 is bigger; and associated probability value is 0.000 less than 0.05 significant level, so variable is suitable for factor analysis (WEI, 2004).

Seen

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[287123],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版