基于少量训练样本问题的特征提取与人脸识别的研究开题报告

 2021-08-08 10:59:09

1. 研究目的与意义

随着安全入口控制和金融贸易方面应用需要的快速增长,生物统计识别技术得到了新的重视。目前,微电子和视觉系统方面取得的新进展,使该领域中高性能自动识别技术的实现代价降低到了可以接受的程度。而人脸识别是所有的生物识别方法中应用最广泛的技术之一,人脸识别技术是一项近年来兴起的,但不大为人所知的新技术。在国外,人脸识别技术早已被大量使用在国家重要部门以及军警等安防部门。在国内,对于人脸识别技术的研究始于上世纪90年代,目前主要应用在公安、金融、网络安全、物业管理以及考勤等领域。

2. 国内外研究现状分析

北京科瑞奇技术开发股份有限公司在2002年开发了一种人脸鉴别系统,对人脸图像进行处理,消除了照相机的影响,再对图像进行特征提取和识别。这对于人脸鉴别特别有价值,因为人脸鉴别通常使用正面照,要鉴别的人脸图像是不同时期拍摄的,使用的照相机不一样。系统可以接受时间间隔较长的照片,并能达到较高的识别率,在计算机中库藏2300人的正面照片,每人一张照片,使用相距1--7年、差别比较大的照片去查询,首选率可以达到50%,前20张输出照片中包含有与输入照片为同一人的照片的概率可达70% 。2005年1月18日,由清华大学电子系人脸识别课题组负责人苏光大教授主持承担的国家"十五"攻关项目《人脸识别系统》通过了由公安部主持的专家鉴定。鉴定委员会认为,该项技术处于国内领先水平和国际先进水平。

1993年,美国国防部高级研究项目署 (Advanced Research Projects Agency)和美国陆军研究实验室(Army Research Laboratory)成立了Feret(FacE Recognition Technology) 项目组,建立了feret 人脸数据库,用于评价人脸识别算法的性能。

3. 研究的基本内容与计划

第 1 周: 调研、资料查询

第 2 周 :可行性分析阶段

第 3 周 ~ 第 4 周:设计阶段

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 研究创新点

在训练样本较小时,向量形式的人脸识别是高维小样本问题,采用奇异值分解定理减少计算量,用Matlab编程,通过图像直观的显示结果。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版