1.6L轿车麦弗逊独立悬架设计外文翻译资料

 2022-10-29 22:02:09

New Nonlinear Model of Macpherson Suspension System for Ride Control Applications

II. NEW MODEL OF MACPHERSON SUSPENSION FOR ACTIVE CONTROL APPLICATIONS

The schematic of a Macpherson strut suspension is shown in Fig.1. To model a Macpherson suspension system for control application, one should take into account both the kinematics and dynamics of the system subjected to the actuation force and road disturbances.

Fig. 1. Schematic of Macpherson Strut Suspension

A. Kinematics

Consider a Macpherson suspension system excited by road disturbance (zr) as shown in Fig. 2. It comprises a quarter-car body, a spindle and a tire, a helical spring, control arm, load disturbance (fd) and an actuation force (fa). The structure has two degrees of freedom including vertical displacement of the sprung mass and rotational motion of the control arm when the mass of the strut is ignored and the bushing at point D is assumed to be a pin joint. In this research, we focus on building a two DOF model of a Macpherson suspension system.

Fig. 2. Model of Macpherson suspension

The detailed assumptions in this modeling are made as follows: The sprung mass has only vertical displacement while movements in other directions are ignored. The unsprung mass (spindle and tire) is connected to the car body through the damper and spring as well as the control arm. The values of zs, vertical displacement of the sprung mass, and theta;, rotational displacement of the control arm, are measured from the static equilibrium position and are considered as generalized coordinates. It is assumed that, in the equilibrium condition, the camber angle is zero. Compared to the other links, the mass and stiffness of the strut are neglected. The spring and tire deflections and the damping force are assumed to be in the linear regions of their operation ranges.

In Fig. 2, link AB represents the control arm which is modeled as a rod, while line CD shows the strut of the mechanism. The revolute joint, located between the control arm and the chassis, is modeled as a rotational joint at point B. In addition, let assume that the origin of the coordinate system, o, is on point B and (yA, zA), (yB, zB), (yJ, zJ), (yP,zP), (yC, zC) and (yD,zD) denote the coordinates of the points A, B, J, P, C and D, respectively. Under road disturbances, the position of the key points on the sprung mass change as the following:

(1)

In addition, the displacements of the main points on the spindle are introduced as:

(2)

where are the coordinates of the points A, J, P and C at equilibrium position. Further,

(3)

where is the rotation angle of the wheel. System of equations (2), is made of six equations containing nine unknown parameters which are (yA, zA), (yJ, zJ), (yP, zP), (yC,zC) and .

To solve this system, it is necessary to employ constraint equations as follows:

(4)

where is the slope of the strut, LA is the length of the control arm and is the initial angle of the control arm resulting from the static deflection and structure design.

Considering equations (2) and (4), results in ten equations including ten unknown parameters, namely, (yA, zA), (yJ, zJ),(yP, zP), (yC, zC), and . Thus, the following equations of displacements can be established:

(5)

When solving the above system of equations, one determines parameter as a function of generalized coordinates and zS. Subsequently, the other unknown parameters including(yA, zA), (yJ, zJ), (yP, zP), (yC, zC) and can be specified. Hence, the displacements of all key points are determined as functions of independent variables and zS. The next step is to find the velocities of the key points. By taking the derivative of (5), one can obtain the velocity components of the main points. When solving the equations of velocities,the value of is determined as following:

(6)

where

B. Equations of Motion

Lagrangersquo;s method is used to obtain the equations of motion of the new model. The kinetic energy, T, is given by

(7)

where mS, mu and mca, are the car body, wheel and control arm masses, respectively. Iu and represent, in turn, the inertia moments of the wheel and the control arm where the latter is around point B. The potential energy, V, is defined as

(8)

where Ks and Kt are the stiffness coefficients of the sprung and unsprung masses, respectively. Moreover, the deflection of the springDelta;L , and the deflection of the tire Delta;z are:

(9)

(10)

The damping function, D, is given by

(11)

where Cp is the damping coefficient and the relative velocity of damper is:

(12)

substituting the values of and , obtained from derivative of (5), and , attained from (6), into (7) as well as using Lagrangersquo;s equations along with the generalized coordinates zS and theta;, one can obtain the accelerations of the generalized coordinates as the following:

(13)

(14)

Since the equations are highly nonlinear and too complicated, the higher order nonlinearities in Eqs. 13 and 14 are ignored to simplify the equations. Let us denote

Hence, one

剩余内容已隐藏,支付完成后下载完整资料


外文翻译

外文原文出处:

M. S. Fallah, R. Bhat, and W. F. Xie. New Nonlinear Model of Macpherson Suspension System for Ride Control Applications[C]. 2008 American Control Conference,Washington,2008

II. NEW MODEL OF MACPHERSON SUSPENSION FOR ACTIVE CONTROL APPLICATIONS

III. SIMULATION AND VERIFICATION OF MODEL

用于驾驶控制应用的非线性麦弗逊悬架系统新模型

II. 麦弗逊悬架新模型在主动控制上的应用

麦弗逊滑柱式悬架原理图如图1所示。为了模拟麦弗逊悬架系统的控制应用,必须考虑受到驱动力和路面激励的悬架系统的运动学和动力学。

图1 麦弗逊滑柱式悬架原理图

  1. 运动学

假设麦弗逊悬架系统受到路面激励(zr)如图2所示。悬架系统包括1/4车身、主轴、轮胎、螺旋弹簧、控制臂、负载扰动(fd)和驱动力(fa)。该结构有两个自由度,包括簧载质量的垂直位移和控制臂的旋转运动,此时忽略滑柱质量,并将衬套在D点假定为铰接。在本研究中,我们致力于构建二自由度麦弗逊悬架模型。

图2 麦弗逊悬架模型

模型详细假设如下:簧上质量只有垂直位移,忽略其他方向的运动。簧下质量(主轴和轮胎)通过减振器和弹簧以及控制臂连接到车身。簧上质量的垂直位移zS和控制臂的旋转位移theta;从静态平衡位置测量,并被定为广义坐标。假定在平衡条件下外倾角为零。相对于其他构件,滑柱的质量和刚度被忽略。弹簧和轮胎挠度与阻尼力被假定为在其操作范围的线性区域。

在图2中,连杆AB表示控制臂,连杆CD代表机械装置的滑柱。位于控制臂与底盘之间的旋转连接,被建模为一个转动铰接点B。此外,我们假定坐标系原点o点在B点处,(yA, zA), (yB, zB), (yJ, zJ), (yP,zP), (yC, zC),(yD,zD)分别代表A, B, J, P, C ,D点的坐标。路面激励下,簧上质量关键点的位置变化如下:

(1)

另外,主轴上主要点的位移如下:

(2)

分别表示点 A, J, P,C在平衡状态下的坐标,且有,

(3)

其中表示车轮的旋转角度。方程组(2)由六个方程组成,包含9个未知参数,为(yA, zA), (yJ, zJ), (yP, zP), (yC,zC) 和 。

为了解方程组,有必要采用如下约束方程:

(4)

其中是滑柱的斜率,LA是控制臂的长度,是由静挠度和结构设计引起的控制臂的初始角度。

考虑方程(2)和(4),结果在十个方程包括十个未知参数,即(yA, zA), (yJ, zJ),(yP, zP), (yC, zC), 和 。因此,可建立下列位移方程:

(5)

在求解上述方程组时,定义参数为如同参数和zS的广义坐标。随后,其他未知的参数包括(yA, zA), (yJ, zJ), (yP, zP), (yC, zC) 和 可以指定。因此,各关键点的位移可由独立变量 和 zS确定。下一步是找出关键点的速度。通过对方程组(5)求导,可以得到主要点的速度分量。在求解速度方程时,值的确定如下:

(6)

其中

B.运动方程

用拉格朗日方程获得新模型的运动方程。动能T由下式得到

(7)

其中

mS,mu ,mca分别是车身,车轮,控制臂的重量。Iu 和 表示车轮和控制臂的惯性矩,后者是绕B点的惯性矩。势能V定义如下

(8)

Ks 和 Kt分别表示簧上质量和簧下质量的刚度系数。弹簧挠度和轮胎挠度表达式如下:

(9)

(10)

阻尼函数D表达式为

(11)

其中Cp为阻尼系数,减振器的相对速度表达式如下:

(12)

代入值和,利用(5)式求导可得,从式(6)可得,带入式(7),用拉格朗日方程与广义坐标zS和theta;,可以得到广义坐标的加速度如下:

(13)

(14)

由于方程高度非线性而且非常复杂。在等式(13)和(14)高阶非线性被忽略来简化方程。表示为

因此,有

非线性运动方程得到如下:

(15)

求解上述方程组,广义坐标下的加速度如下:

(16)

在此引入状态变量[x1, x2,x3,x4]T=[]T ,式(16)可写成如下状态空间格式。

(17)

由于方程是非线性的,求解它们是一项有意义的任务,同时需要使用复杂的非线性控制器,平衡状态下有(x1e, x2e, x3e, x4e)=(0,0,0,0),此时所有方程的线性化,得到方程:

(18)

其中

III.模型仿真与验证

  1. 传统,线性和非线性模型的比较

为了比较这几种模型,下列值统一采用文献[12]中的数值和软件ADAMS的默认值。

对麦弗逊悬架关键点的位置设定如下(所有尺寸以毫米为单位):

传统模型的输出变量为簧上质量和簧下质量的垂直位移和,而新模型的输出矢量包括簧上质量的位移和控制臂的角位移。因此,为比较两种模型,将弹簧的位移作为输出变量。两个模型的频率响应如图3所示。可以看出,新模型第一谐振频率小于传统的模型,第二谐振频率大于传统模型。

图3 新模型与传统模型的频率响应

图4 非线性、线性和传统模型的加速度传递率

在文献中,簧上质量的加速度被认为是悬架的乘坐舒适性的一个评价标准,特别是在高频率范围。图4比较了0-20 Hz频率之间的三个模型的加速度传递率。如图4所示,线性模型和非线性模型在频率0-5 Hz之间性能良好。然而,传统模型存在一些麦弗逊悬架系统的性能差异。

B.运动学参数的评价

其中一些在底盘设计中非常重要而且影响车辆操纵稳定性的运动学参数有1)外倾角2)主销内倾角3)主销后倾角4)轮距。外倾角度的改变是由于轮胎摩擦并产生侧向力作用于车轮,导致车辆向一侧偏转。主销内倾角和主销后倾角的改变会影响自调力矩,从而影响车轮弹跳或回弹时车辆的操纵稳定性。当车轮在颠簸的路面上行驶受到回弹时,轮距的变化导致滚动轮胎打滑产生横向力[13]。在下面的模拟中,我们将路面激励zr设置为阶跃输入为100毫米,时间步长为0.0001秒。

式(3)中的前轮外倾角,是车轮中心平面和路面垂线之间的角度[13]。图5为线性和非线性模型中此参数的变化。定义转向轴是在三维空间通过D点和A点的线,主销内倾角是转向轴在y-z平面的投影和路面垂线之间的夹角。图6为线性和非线性模型中主销内倾角变化曲线。转向轴在x-z平面的投影和路面垂线之间的夹角定义为后倾角,该参数的性能如图7所示。轴距是前轮中心之间的横向距离。图8为线性和非线性模型中轮距的变化。显然与之前的参数不同,线性化对轮距有很大的影响。结果表明线性模型在研究轮距性能上不够准确。

图5 外倾角的变化

图6 主销内倾角的变化

图7 主销后倾角的变化

图8 轮距的变化

外文原文出处:

Daniel A.Mantaras, Pablo Luque, Carlos Vera. Development and validation of a three-dimensional kinematic model for the McPherson steering and suspension mechanisms[J]. Mechanism and Machine Theory, 2004

  1. Analysis of the real system
  2. Reference frames used
  3. Approach of the kinematic model
  4. Application of the kinematic model
  5. Development of the software, validation and application of the model

麦弗逊转向和悬架系统三维运动学模型的建立与验证

2.实际系统分析

对麦弗逊型转向悬架的运动学研究初步考虑以下3点:

bull;假定悬架的所有构件都是刚性的。

bull;忽略衬套变形。

bull;根据轮胎的动态特性确定车轮的有效半径。

对应于负重轮的悬架系统运动学分析共有七个要素:车身、横臂、转向节、减振器活塞杆、横拉杆、转向器和车轮。这些要素的运动副见表1。

运动副

自由度

运动副连接元素

转动副

1

O

车身-横臂

球面副

3

Orsquo;

横臂-滑柱-转向节

球面副

3

C

转向横拉杆-滑柱-转向节

转动副

1

OR

车轮-滑柱-转向节

球面副

3

D

转向杆–转向架

移动副

1

A

转向架-车身

圆柱副

2

B-M

活塞杆-阻尼筒

球面副

3

B

车身-滑柱

表1 构件之间的接头和运动副

机构的自由度(d.o.f)根据库兹贝奇准则[5–8]公式计算,根据表达式:

(1)

在五个自由度中,只有两个代表车轮的运动学:转向齿条的位置和支柱的行程。如果分析扩展到前轴的整体模型,(图2)发现共有三个代表性的自由度。也就是说,整个机构的运动可由三个变量来说明,即转向齿条的位置(作用在方向盘上)和麦弗逊滑柱的行程。

图2 麦弗逊悬架和齿轮齿条式转向器运动学模型

方向盘的转向,即齿条产生位移,由驾驶者直接操控,而悬架行程取决于动态行动、悬架减震和弹性元件的特性以及几何结构等。这些变量通过带

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[137410],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版