数学的创造力外文翻译资料

 2023-03-31 09:03

Mathematical Creativity

  1. The Characteristics of Mathematical Creativity

In making the great leap of mathematical creation, we see certain characteristics coming to the fore. Mathematical creativity is:

bull; Relational (in the sense of Skemp). It stimulates through interaction: it establishes a conceptual link between two or more concepts, such that a new idea emerges which integrates different aspects form the initial concepts into a single one. Interaction of ideas in the mind of the mathematician is perhaps the most important driving force of mathematical creativity. Mathematical ideas and concepts arise as mobile building blocks and combine (if the subject is not mathematically totally insignificant) to form some new configuration. If the configuration is favourable, it enters into the theory. This has already been described by Poincareacute; .

A deeper view of the process entails the question: is mathematical creativity acting just as mutations in biology?

A mathematical mutation occurs when a chain of ideas undergoes a restructuring, maybe in one single place. Among all restructurings some are useless, others are useful. Some survive, others are eliminated although they are entirely correct from a formal viewpoint. An example of such a case is the theory of cubics, algebraic curves of degree three, developed as a generalization of the theory of conics; this theory was developed in the nineteenth century, but is seldom taught today.

We therefore also see that mathematical creativity is:

bull; Selective. This analogy with biology arises through the struggle for life amongst mathematical concepts, with a natural selection and survival of the fittest. For example, the several theories of integration established at the end of the nineteenth and the beginning of the twentieth century to generalize the Riemann integral entered into competition with each other and finally the Lebesgue integral survived to dominate mathematical analysis (Van Dalen amp; Monna, 1972).

Selectivity gives rise to a related criterion:

bull; Fitness. This is a qualifying criterion for the value of definitions and theorems and sets of axioms in mathematics. The well-known estimation by Stanislas Ulam of the 200,000 yearly produced theorems makes it clear that a sieve seems very necessary. In fact, the sieve exists, and in the first place does not consist of the referees of the numerous journals, but acts spontaneously and unconsciously in time, through the action of the struggle for mathematical life and the survival of the fittest ideas.

Finally, mathematical creativity must lead to new ways of handling the complexity of the relationships between more complex concepts. It does this by encapsulating new structures into single objects which are easier to manipulate mentally. It is therefore:

bull; Condensing. Mathematical creativity includes the ability to choose the appropriate wording and symbols for the representation of mathematical concepts. The importance of symbolic representations in mathematics cannot be overestimated. Well-chosen symbols allow for a condensation of several aspects of one concept into a single whole which is evoked every time the symbol occurs in a text. In this manner the use of the symbol frees “memory space” in the mind which becomes available for other, till then unknown or unclear concepts.

  1. The Results of Mathematical Creativity

After the process of mathematical creativity, there are various qualities that the new ideas must exhibit in order that they might be accepted and survive in the mathematical community at large. MacLane (1986) suggests a number of criteria which are required so that the new idea can be labelled “good mathematics” . It must be:

bull; Illuminating. This seems to be a necessary characteristic of mathematical creativity. Good mathematics should be of help in understanding. A result that obscures is not creative, or is creativity used in an inappropriate direction, for example through indulging in long technical calculations. For the same reason we say that mathematical creativity in the first stage (algorithmic activity) is very low.

bull; Deep. Mathematical creativity is supposed to uncover hidden relationships. A deep result is not necessarily difficult to prove, but it is usually wide in its relevance and application.

bull; Responsive or fruitful. The successful product of creativity is based on former results and often responds to current needs. If it is to survive, it also provides a basis for future development so that it remains an essential part of living mathematics.

bull; Original. There should be something unexpected in the results, something new in the field, if it is just a rearrangement of known results, there will be strong doubts concerning the creative aspect of the achievement.

In addition, there are subtle qualities of surprise, even humour, which cause a mathematical result to appeal to a professional mathematician. The following example illustrates the latter (though it is not put forward as an example of particularly deep mathematics). It is an inference which occurs using well accepted methodology (use of axioms, logical deductions, and so on) and is analogous to the usual reasoning in mathematical papers, but the result of the inference is strange and unexpected.

The problem (from Wille, 1984) runs as follows:

In the teaching of geometry, how shall the teacher proceed in order to draw a “general” triangle on the blackboard?

The problem is ill-posed as long as we have no agreement on what a general triangle is; he

剩余内容已隐藏,支付完成后下载完整资料


附录A 译文

数学的创造力

1.数学创造力的特点

在进行数学创造的巨大飞跃中,我们看到了前数学创造力的某些特征是:

bull;关系(Skemp意义上的)。它是通过互动来激发的:它在两个或多个概念之间建立起概念上的联系,从而产生一个新的想法,将最初概念的不同方面整合成一个单一的概念。数学家头脑中思想的相互作用也许是数学创造力最重要的驱动力。数学思想和概念以可移动的积木形式出现,并结合(如果这个学科在数学上不是完全无关紧要的话)形成一些新的结构。如果构型是有利的,则进入理论。这已经被Poincareacute;描述过了。

对这一过程的更深层次的理解需要这样一个问题:数学上的创造力是否就像生物学上的突变一样?

当一系列思想经历重组时,数学突变就会发生,也许是在一个单一的地方。在所有的重组中,有些是无用的,有些是有用的。有些幸存了下来,有些被淘汰了,尽管它们从正式的观点来看是完全正确的。这种情况的一个例子是作为二次曲线理论的推广而发展起来的三次代数曲线理论;这一理论是在19世纪发展起来的,但现在很少有人教授。

因此,我们也看到数学创造力是:

bull;有选择性的。这种与生物学的类比源于数学概念之间的生存斗争,即自然选择和适者生存。例如,19世纪末20世纪初为推广Riemann积分而建立的几种积分理论相互竞争,最终Lebesgue积分幸存下来并主导了数学分析(Van Dalen amp; Monna, 1972)。

选择性产生了一个相关的标准:

bull;适合度。这是数学中定义、定理和公理集的值的一个限定标准。斯坦尼斯拉斯·乌拉姆(Stanislas Ulam)对每年产生的20万个定理的著名估计表明,筛选似乎非常必要。事实上,筛选是存在的,它首先不是由众多期刊的审稿人组成,而是通过数学生命的奋斗和适者生存思想的行动,在时间上自发地、无意识地行动。

最后,数学上的创造性必须引出处理更复杂概念之间复杂关系的新方法。它通过将新结构封装成更容易在心理上操作的单一对象来实现这一点。因此:

bull;压缩。数学创造力包括选择适当的措辞和符号来表示数学概念的能力。符号表示法在数学中的重要性再怎么估计也不过分。精心选择的符号可以将一个概念的几个方面浓缩成一个整体,这个整体在文本中每次出现符号时都会被引用。在这种方式下,符号的使用释放了大脑中的“记忆空间”,这些空间对其他未知或不清楚的概念可用。

  1. 数学创造力的结果

经过数学创新的过程后,新思想必须表现出各种各样的品质,才能在整个数学社会中被接受和生存。MacLane(1986)提出了一系列的标准,这些标准是必须的,所以这个新思想可以被称为“好数学”。它必须是:

bull;启发性。这似乎是数学创造力的一个必要特征。好的数学对理解应该有帮助。一个模糊的结果不是创造性的,或者是创造性被用在了一个不合适的方向上,例如沉溺于长时间的技术计算。出于同样的原因,我们说数学创造力在第一阶段(算法活动)是非常低的。

bull;深刻。数学创造力被认为是揭示隐藏的关系。一个深刻的结果不一定很难证明,但它通常具有广泛的相关性和适用性。

bull;灵敏且有效。成功的创造性产物是建立在以前的结果之上的,并且经常对当前的需要作出反应。如果它要生存下去,它也为未来的发展提供了基础,因此它仍然是当今数学的重要组成部分。

bull;原创。在结果中应该有一些意想不到的东西,在该领域中应该有一些新的东西,如果它只是对已知结果的重新安排,那么人们就会对这项成就的创造性方面产生强烈的怀疑。

除此之外,还有一种微妙的惊喜,甚至是幽默的特质,这使得一个数学结果能够吸引专业的数学家。下面的例子说明了后者(尽管它不是作为一个特别深奥的数学例子提出的)。它是一种使用公认的方法论(使用公理、逻辑推理等)进行的推理,类似于数学论文中的通常推理,但推理的结果是奇怪的和意想不到的。

问题(来自Wille, 1984)如下:

在几何教学中,教师如何在黑板上画出一个“一般”的三角形?

如果我们对什么是一般三角形还没有达成一致,那么这个问题就是不确定的;因此,需要对“一般”一词进行明确的描述。这样,数学理论的第一步就遇到了:提出明确的定义。由于我们的目的是为了教育数学经验不足的学生,所以说“一般”是指没有任何特殊几何性质的三角形是可以接受的。此外,假定学生缺乏数学经验,我们认为必须用肉眼看到三角形是一般的。例如,一个角为89°、45°、46°的三角形会被学生认为是直角、等边三角形,所以不符合我们的要求。这些问题背后的教学原则是,数学概念的理解和发展是建立在学习者头脑中的概念图像的基础上的。通过选择适当的例子,可以生成正确的概念图像;因此,在几何的情况下,选择要画在黑板上的图片可能会产生对形式思想的正确理解(或不正确理解)。

学生们用肉眼就能认识三角形的共性,这一主张需要实证研究。在实验的基础上,建立了人眼区分不同尺寸角度的能力模型。它似乎不能识别第二个角度不同于第一个给定的角度是正态分布的根据两个角度之间的差。从实验上看,标准偏差是有99%的确定性,可以通过不同的尺寸区间获得。因此,如果99%的学生都认为三角形是“一般的”,我们就采用这种说法。

这就产生了下列公理系统,使前面各段所建立的条件形式化:

公理一:三角形不是等腰的。

公理二:三角形不是直角的。

公理III:两个差小于15°的角被认为是相等的。根据这些公理,我们可以证明以下重要定理:

定理到相似度(公理III)为止,恰好有一个具有锐角的一般三角形,即45°、60°、75°。

(我们注意到有一个钝角的无穷大数。)

证明:假设三角形有角A,B,C,

由于A与90°相差至少15°,我们有,,其中同样,B与A至少相差15°,所以

,最后

其中.

但是角和是180°,所以

非负数a,b,c满足

因此,,和

,,.

如上所述。

  1. 数学创造力的易错性

数学创造力与一般公认的数学理论的区别在于,它有时会犯错误。它以一种可能被证明是有深刻了解的办法将新想法组合在一起,也可能同样会导致错误。不能保证定理可以被正确地表述,甚至不能保证这些定理有正确的证明。著名的例子有四色定理的早期证明,欧几里得第五假设的众多“证明”,以及最近的Poincareacute;猜想的“证明”,在发现缺陷之前,该猜想似乎可信了几个月。

根据拉卡托斯(1976)的观点,数学并不是按照沃班的方式进行的,不是按照预先确定的方向一步一步地稳步前进,而是像先锋队的骑兵那样,对新领域的突袭可能是有缺陷的。数学思维,相对于数学想法的组织的反应,是一种创造性活动,它带来了人为错误的可能性。事实上,正是错误的可能性使重大进步成为人类成功的丰碑。

  1. 高等数学思维教学的后果

数学思维的这一关键阶段并不可靠,学生们可能很难接受这一点。他们的整个数学训练通常伴随着算法的预备,这些算法为解决给定的一类问题提供了确定性,与此同时,他们(错误地)相信,只要有足够的时间和学习,就会有一种算法可以解决任何给定的问题。当他们研究微分方程时,他们看到了各种类型的方程的解:一阶可分离方程,那些可以用积分因子或幂级数方法求解的方程,简单简谐运动的特殊情况,然后是常系数的高阶微分方程。对于这样的学生来说,解开微分方程的子集,在真正的基数意义上,是所有微分方程的一个无关紧要的少数,这将会是一个惊喜。

学生们经常给人这样的印象:在数学中,一切都是合乎逻辑的,确定的,准确的,可证明的,可以清楚地解释的。然而,数学上的创造力不属于这些东西。它提供了研究数学家的实际工作实践和数学家技术层面之间的主要区别,被选择来教授给下一代。

我们已经看到,数学创造力有一些特定的要求,这些要求似乎妨碍了除最天才外的所有人发挥数学创造力。特别地,它需要在给定的背景下对数学的复杂理解,从而使已知的理论得到创造性的发展。显然,我们不应该指望学生们(重新)发明企业数学活动花了几个世纪才取得的成就。然而,如果我们不鼓励他们参与数学思想的产生和他们的日常复制,我们就不能开始向他们展示高级数学思维的全部范围。

这样的方法已经在小学开始了,学校要求孩子们从对他们来说新奇的背景出发,进行扩展的数学调查。对他们来说,这样的事业是有创意的。它提供了一种对传统数学学习方法的补充而不是以任何方式取代它们的活动。它让孩子们开始探索,猜测和测试,形成和证明,以一种赋予数学过程更深层意义的方式。

这样,在初等数学的内容和方法变得更加明确在国家课程和国家标准,有补充性的举措鼓励年幼的孩子在知识的生成中发挥自己的作用来做出猜想,进行预判错误,必要的检查,说服和证明。在一个快速变化的社会中,这种超越算法应用的灵活思维不仅是人们所需要的,而且越来越必要。只有最低水平的创造力是不可接受的。

在下一章中,我们将看到,数学真理的看似无坚不摧的堡垒,即形式证明,在实践中受到语境的限制,并依赖于数学共同体的文体惯例。因此,它比数学家所在意承认的东西更容易犯错误。因此,更广泛地欣赏高等数学思维的全部范围,包括通过猜想、辩论和证明产生知识和创造性地解决问题,是一个值得考虑的目标。在第13章中,我们将回到数学证明中猜想和辩论的问题。因此,在高等数学思维的广泛框架下,我们认为,数学创造力是未来高等数学教学中值得更多关注的焦点,而目前在本科数学课程中被完全忽视的数学创造力。

附录B 外文原文

Mathematical Creativity

  1. The Characteristics of Mathematical Creativity

In making the great leap of mathematical creation, we see certain characteristics coming to the fore. Mathematical creativity is:

bull; Relational (in the sense of Skemp). It stimulates through interaction: it establishes a conceptual link between two or more concepts, such that a new idea emerges which integrates different aspects form the initial concepts into a single one. Interaction of ideas in the mind of the mathematician is perhaps the most important driving force of mathematical creativity. Mathematical ideas and concepts arise as mobile building blocks and combine (if the subject is not mathematically totally insignificant) to form some new configuration. If the configuration is favourable, it enters into the theory. This has already been described by Poincareacute; .

A deeper view of the process entails the question: is mathematical creativity acting just as mutations in biology?

A mathematical mutation occurs when a chain of ideas undergoes a restructuring, maybe in one single place. Among all restructurings some are useless, others are useful. Some survive, others are eliminated although they are entirely correct from a formal viewpoint. An example of such a case is the theory of cubics, algebraic curves of degree three, developed as a generalization of the theory of conics; this theory was developed in the nineteenth century, but is seldom taught today.

We therefore also see that mathematical creativity is:

bull; Selective. This analogy with biology arises through the struggle for life amongst mathematical concepts, with a natural selection and survival of the

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[588255],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。