文献综述(或调研报告):
天线技术对RFID系统十分重要,是决定RFID系统性能的关键部件。RFID天线可以分为低频、高频、超高频及微波天线,每一频段天线又分为电子标签天线和读写器天线,不同频段天线的结构、工作原理、设计方法和应用方式有很大差异,导致RFID天线种类繁多、应用各异。在低频和高频频段,读写器与电子标签基本都采用线圈天线。微波RFID天线形式多样,可以采用对称振子天线、微带天线、阵列天线和宽带天线等,同时微波RFID的电子标签较小,天线要求低造价、小型化,因此微波RFID出现了许多天线制作的新技术。
为适应世界范围电子标签的快速应用和不断发展,需要提高RFID天线的设计效率,降低RFID天线的制造成本,因此RFID天线大量使用仿真软件进行设计,并采用了多种制作工艺。天线仿真软件功能强大,已经成为天线技术的一个重要手段,天线仿真和测试相结合,可以基本满足RFID天线设计的需要。RFID天线制作工艺主要有线圈绕制法、蚀刻法和印刷法,这些工艺既有传统的制作方法,也有近年来发展起来的新技术,天线制作的新工艺可使RFID天线制作成本大大降低,走出应用成本瓶颈,并促进RFID技术进一步发展。
RFID在不同的应用环境中使用不同的工作频段,因此需要采用不同的天线通信技术,来实现数据的无线交换。按照现在RFID系统的工作频段,天线可以分为低频LF、高频HF、超高频UHF及微波天线,不同频段天线的工作原理不同,使得不同天线的设计方法也有本质的不同。在RFID系统中,天线分为电子标签天线和读写器天线,这两种天线按方向性可分为全向天线和定向天线等;按外形可分为线状天线和面状天线等;按结构和形式可分为环形天线、偶极天线、双偶极天线、阵列天线、八木天线、微带天线和螺旋天线等。在低频和高频频段,RFID系统主要采用环形天线,用以完成能量和数据的电感耦合;在433MHz、800/900MHz、2.45GHz和5.8GHz的微波频段,RFID系统可以采用的天线形式多样,用以完成不同任务。
影响RFID天线应用性能的参数主要有天线类型、尺寸结构、材料特性、成本价格、工作频率、频带宽度、极化方向、方向性、增益、波瓣宽度、阻抗问题和环境影响等,RFID天线的应用需要对上述参数加以权衡。
微波RFID技术是目前RFID技术最为活跃和发展最为迅速的领域,微波RFID天线与低频、高频RFID天线相比有本质上的不同。微波RFID天线采用电磁辐射的方式工作,读写器天线与电子标签天线之间的距离较远,一般超过1m,典型值为1~10m;微波RFID的电子标签较小,使天线的小型化成为设计的重点;微波RFID天线形式多样,可以采用对称振子天线、微带天线、阵列天线和宽带天线等;微波RFID天线要求低造价,因此出现了许多天线制作的新技术。
微波RFID天线的设计,需要考虑天线采用的材料、天线的尺寸、天线的作用距离,并需要考虑频带宽度、方向性和增益等电参数。微波RFID天线主要采用偶极子天线、微带天线、非频变天线和阵列天线等。
微波RFID常采用微带天线。1953年,Deschamps首先提出了微带辐射器的概念。但是,直到20世纪70年代初,由于微波集成技术的发展以及各种低耗介质材料的出现,微带天线的制作才得到了工艺保证。而空间技术的发展,又迫切需要低剖面的天线。这样微带天线的研究引起了广泛的重视,各种新形式和新性能的微带天线不断涌现。如今,微带天线已大量地应用于卫星通信、雷达、遥感、导弹、环境测试、便携式无线设备等领域。
微带天线是平面型天线,具有小型化、易集成、方向性好等优点,可以做成共形天线,易于形成圆极化,制作成本低,易于大量生产。微带天线按结构特征分类,可以分为微带贴片天线和微带缝隙天线两大类;微带天线按形状分类,可以分为矩形、圆形和环形微带天线等;微带天线按工作原理分类,可以分成谐振型(驻波型)和非揩振型(行波型)微带天线。微带天线目前已应用于100MHz—100GHz的宽广频域上的大量无线电设备中,特别是飞行器上和地面便携式设备中。
微带贴片天线是微带天线中最常见的形式。它由带导体接地板的介质基片上贴加导体薄片形成。通常利用微带线与同轴线一类馈线馈电,使在导体贴片与接地板之间激励起射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射。其基片厚度与波长相比一般很小,因而它实现了一维小型化。
