|
文 献 综 述 一、引言当前中国具有富煤贫油少气的资源特点,这决定了中国在未来很长一段时间内是以煤为主的能源结构,再加上产业结构和经济的发展对能源的依赖仍然较大,尤其是电力能源。所以利用煤发电颇占优势,燃煤发电的火力发电占了总发电量约80%,但其效率低,平均只有30%左右,环境危害大,而新型发电方法,风能,太阳能具有一定的地域性,目前无法大规模应用。因此发展低碳、清洁、高效的煤炭发电技术已成为一项至关紧要的任务。固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)是一种可直接将储存在燃料和氧化剂中的化学能高效、环境友好地转化为电能的能量转化装置。因其整个发电过程为电化学反应,无需经过燃料燃烧,故无卡诺循环的限制,理论上转化效率可以达到85%-90%以上。与其他燃料电池相比,SOFC还具有功率密度高、燃料适应性强、全固态结构、设备简单等优点,被普遍认为是在未来会得到广泛普及应用的一种燃料电池。 二、单电池结构所有单电池都由三部分组成,电解质,阴极和阳极,如图1所示(图片来自网络)。这三部分都是陶瓷材料,故也叫陶瓷基燃料电池。目前电解质有质子导体电解质和氧离子导体电解质两种形式。本文主要针对中高温SOFC的氧离子导体电解质及电极中的陶瓷材料研究综述[1]。
图1 单电池结构图
|
|
参考文献: [1] 韩敏芳,张永亮.固体氧化物燃料电池中的陶瓷材料[J].硅酸盐学报,2017,45(11):1548-1554. [2] Etsell T H , Flengas S N . The Electrical Properties of Solid Oxide Electrolytes[J]. Chemical Reviews, 1970, 70(3):339-376. [3] 李勇,邵刚勤,段兴龙,王天国.固体氧化物燃料电池电解质材料的研究进展[J].硅酸盐通报,2006(01):42-45 104. [4] Ishihara T, Hiei Y and Takita Y. Oxidative Reforming of Methane Using Solid Oxide Fuel Cell with LaGaO3-Based Electrolyte[J]. Solid State Ionics, 1995, 7-9: 371-375. [5] Ishihara T, Honda M, Shibayama T, Minami H, Nishiguchi H and Takita Y. Intermediate Temperature Solid Oxide Fuel Cells Using a New LaGaO3 Based Oxide Ion Conductor-I. Doped SmCoO3 as a New Cathode Material[J]. Journal of the Electrochemical Society. 1998, 145: 3177-3183. [6] Feng M , Goodenough J B . A superior oxide-ion electrolyte[J]. European Journal of Solid State and Inorganic Chemistry, 1994, 31:663-672. [7] Tatsumi, Ishihara, Hideaki, et al. Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor[J]. Journal of the American Chemical Society, 1994, 116(9):3801–3803. [8] 朱腾龙.SrFeO3基钙钛矿阳极结构演化、机理及应用研究[D].中国矿业大学(北京),2016. [9] Petrov A N , Kononchuk O F , Andreev A V , et al. Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y[J]. Solid State Ionics, 1995, 80(3-4):189-199. [10] Sunarso J , Hashim S S , Zhu N , et al. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review[J]. Progress in Energy amp; Combustion Science, 2017, 61(jul.):57-77. [11] E. Perry Murray, S.A. Barnett. (La, Sr)MnO3-(Ce, Gd)O2-x composite cathodes for solid oxide fuel cells[J]. Solid State Ionics, 2001,143:265-273. [12] Chen J , Liang F , Liu L , et al. Nano-structured (La, Sr)(Co, Fe)O3 YSZ composite cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2008, 183(2):586-589. [13] Leng Y , Chan S H , Liu Q . Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte[J]. International journal of hydrogen energy, 2008, 33(14):p.3808-3817. [14] Jalili H , Han J W , Kuru Y , et al. New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of La(0.7)Sr(0.3)MnO(3)[J]. Inorganic Chemistry, 2011, 2(7):801-807. [15] Zhang K , Ge L , Ran R , et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5 delta; as materials of oxygen permeation membranes and cathodes of SOFCs[J]. Acta Materialia, 2008, 56(17):4876-4889. [16] Kim G , Wang S , Jacobson A J , et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5 x with a perovskite related structure and ordered A cations[J]. Journal of Materials Chemistry, 2007, 17(24):2500-2505. [17] A. Montenegro Hernaacute;ndez, Mogni L , Caneiro A . La2NiO4 delta as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes[J]. International Journal of Hydrogen Energy, 2010, 35(11):6031-6036. [18] Cowin P I , Petit C T G , Lan R , et al. Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells[J]. Advanced Energy Materials, 2011, 1(3):314-332. [19] 黄贤良,赵海雷,吴卫江,等.固体氧化物燃料电池阳极材料的研究进展[J].硅酸盐学报,2005, 33 (11) :109–115. [20] Wang Wei, Su Chao, Wu Yuzhou, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels.. Chemical Reviews, 2013, 113(10):8104-51. [21] Turgut M. Guuml;r. Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas. Progress in Energy and Combustion Science, 2016, 54:1-64. [22] Boldrin Paul, Ruiz-Trejo Enrique, Mermelstein Joshua, et al. Strategies for Carbon and Sulfur Tolerant Solid Oxide Fuel Cell Materials, Incorporating Lessons from Heterogeneous Catalysis.. Chemical Reviews, 2016, 116(22):13633-13684. [23] Mcintosh S , Gorte R J . Direct Hydrocarbon Solid Oxide Fuel Cells[J]. Chemical Reviews, 2004. [24] Seungdoo Park, John M. Vohs, Raymond J. Gorte. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775):265-267. [25] S Jung,C Lu,H He, et al.Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes[J].J Power Sources, 2006, 154 (1) :42–50. [26] Bastidas D M , Tao S , Irvine J T S . A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes[J]. Journal of Materials Chemistry, 2006, 16(17):1603-1605. [27] Sivaprakash Sengodan, Sihyuk Choi, Areum Jun, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2):205-209. [28] S.P. Jiang, X.J. Chen, S.H. Chan, J.T. Kwok, K.A. Khor, Solid State Ionics 177 (2006)149–157. [29] Yang C , Yang Z , Jin C , et al. Sulfur-Tolerant Redox-Reversible Anode Material for Direct Hydrocarbon Solid Oxide Fuel Cells[J]. Advanced Materials, 2012, 24(11):1439-1443. [30] Han M , Yang Z , Chen F , et al. Performance evaluation of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-delta; as both anode and cathode material in solid oxide fuel cells[J].Int J Hydrogen Energ, 2014, 39 (14) :7402–7406. [31] Dragos Neagu, George Tsekouras, David N. Miller, et al. In situ growth of nanoparticles through control of non-stoichiometry. Nature Chemistry, 2013, 5(11):916-923. [32] Dragos Neagu, Tae-Sik Oh, David N. Miller, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nature Communications, 2015, 6(1):933-936. [33] Du Zhihong, Zhao Hailei, Yi Sha, et al. High-Performance Anode Material Sr2FeMo0.65Ni0.35O6-delta; with In Situ Exsolved Nanoparticle Catalyst.. ACS Nano, 2016, 10(9):8660-9. [34] Cho S , Fowler D E , Miller E C , et al. Fe-substituted SrTiO3-delta;–Ce0.9Gd0.1O2 composite anodes for solid oxide fuel cells[J]. Energy amp; Environmental Science, 2013, 6(6):1850-1857. [35] 胡鑫鑫,甘钊生,梁志,陈平清,黄小翰.钙钛矿型复合氧化物的制备方法研究进展[J].广东化工,2015,42(24):119-120 123. |
