Journal of Network and Computer Applications
Review-Wireless sensor networks for rehabilitation applications: Challenges and opportunities
Abstract- Rehabilitation supervision has emerged as a new application of wireless sensor networks (WSN), with unique communication, signal processing and hardware design requirements. It is a broad and complex interdisciplinary research area on which more than one hundred papers have been published by several research communities (electronics, bio-mechanical, control and computer science). In this paper, we present WSN for rehabilitation supervision with a focus on key scientific and technical challenges that have been solved as well as interdisciplinary challenges that are still open. We thoroughly review existing projects conducted by several research communities involved in this exciting field. Further-more, we discuss the open research issues and give directions for future research works. Our aim is to gather information that encourage engineers, clinicians and computer scientists to work together in this field to tackle the arising challenges. We believe that bridging researchers with different scientific backgrounds could have a significant impact on the development of WSN for rehabilitation and could improve the way rehabilitation is provided today.
keywords- Wireless sensor networks
Rehabilitation supervision
Human motion tracking
Healthcare
I. INTRODUCTION
Rehabilitation is a therapy where the patient performs various physical exercises and activities to achieve a physical functioning level that allows him to return to his initial motor capabilities after an accident, a stroke or a surgery. Studies show that intensive rehabilitation decreases the recovery time and achieves optimal rehabilitation outcomes (Kwakkel et al., 2004). Further-more, physical therapists should continuously monitor and rectify patients during rehabilitation to avoid improperly exercising. Continuous supervision of patients during long term rehabilita-tion therapy increases the load for physical therapists and medical staff and cost too much for patients. At a time of such challenges, new solutions arise from the need to develop effective, low-cost and easy to use rehabilitation supervision systems suitable for ambulatory or home settings.
Human Motion Tracking systems attracted significant interest in the last two decades due to their potential in rehabilitation supervision (Zhou and Hu, 2008). Several human motion tracking systems have been proposed both in industry and academic research. They can be classified as either visual or non-visual systems as depicted in Fig. 1.Visual human motion tracking systems (Moeslund and Granum, 2001) conduct 3D localization of the patientrsquo;s body and limbs by combining data of several cameras recording the patient from different perspectives. Marker-free systems (Gonzalez-Ortega et al., 2010) track the boundaries of human body while marker-based systems, such as CODA (http://www.codamotion.com) or Qualisys (http://www.qualisys.com/), track either light reflective markers (passive markers) or light-emitting diodes (active markers) attached to the patient. Such systems have shown promising performance in rehabilitation supervision due to their accurate localization (error around 1 mm Zhou and Hu, 2008). However, they are expensive, invasive and suffer from occlusion and line-of-sight problems.
In robot-based solutions (Yoon et al., 2010), the patient installs his limbs on a robot to perform several movement patterns. The robot moves, guides or just disturbs the movement of the limb while measuring kinematic values such as velocity, acceleration and force (Duschau-Wicke et al., 2010). Such systems are recom-mended for patients with severe disabilities which make them unable to perform exercises by themselves. However, they are expensive, cumbersome and cannot be used in ambulatory or home rehabilitation settings.
Sensors have been used in motion tracking (Wong et al., 2007) to avoid problems inherent to visual systems such as occlusion and line-of-sight problems (Zhou and Hu, 2008). In sensor based systems, the patient wears several small nodes able to assess human movement without interfering with his natural behaviors. These nodes form a network which unobtrusively gathers infor-mation regarding position, motion, direction and physiological state. As depicted in Fig. 2, a node is composed of several sensors for data collection, a microcontroller with memory for data processing, a radio transceiver for data transmission and a battery for powering all circuits in the device. Using sensors dramatically reduces the cost and size of rehabilitation supervision systems and opens new opportunities.
Researchers from biomedical, biomechanical and computer science communities have been working toward the development of wireless sensor networks that bring a wave of breakthroughs in providing rehabilitation. Many teams have successfully developed working systems and early clinical results have been already obtained. Indeed, wireless sensor networks have been used in several rehabilitation applications such as stroke rehabilitation, balance training, parkinsonrsquo;s disease and telerehabilitation. The excitement for this technology is motivated by the several benefits associated to long-term monitoring, low cost, rapid deployment, self organization and flexibility features of WSN.
In this paper, we present WSN for rehabilitation supervision with focus on key scientific and technical challenges and design considerations. We thoroughly survey, analyze and discuss works conducted by several research communities involved in this exciting field, namely, electronics, bio-mechanical and computer science communities. Our aim is to gather information that encourage engineers, clinicians and computer scientists to work together in this field. Furthermore, we pr
剩余内容已隐藏,支付完成后下载完整资料
网络与计算机应用期刊
摘要
康复监督已成为无线传感器网络的一个新的应用程序,具有独特的通信、信号处理和硬件设计要求。作为一个广泛而复杂的跨学科的研究领域,一些研究团体(如电子学、生物力学、控制和计算机科学)对其已经发表了一百多篇论文。
在本文中,我们介绍了无线传感器网络在康复监管领域的应用,重点放在关键科学技术领域已经解决的问题,以及跨学科领域中仍然存在的挑战。我们仔细审查几个研究团体在这个令人兴奋的领域进行的项目。此外,我们还讨论存在的研究问题,并为今后的研究工作提供了指导。
我们的目标是收集有用的信息,鼓励工程师、临床医师和计算机科学家在这一领域携手合作,以解决所带来的种种挑战。我们相信,有不同科学背景的桥接研究人员能够对无线传感器网络在康复领域的发展产生显著影响,并改进当今康复治疗的方法。
关键字:无线传感器网络,康复的监督,人体运动跟踪,医疗保健
1.介绍
在一场意外事故、中风或手术之后,通过对病人进行各种体育锻炼和活动,使其身体恢复到原有运动能力的机能水平,这就是康复治疗。研究表明,强化康复治疗可以减少身体恢复时间,并达到最佳的康复效果( Kwakkel等, 2004)。此外,物理治疗师应持续监测和纠正康复期间的病人,以避免病人做不当的运动。在长期康复治疗中,对患者的持续督导增加了物理治疗师和医务人员的负担,对患者来说且其成本也过高。于是,新的解决方案的应运而生,该康复监测系统易于操作,不仅满足了高效和低成本这两个需求,而且该系统也适用于门诊或家庭操作。
在过去的二十年里,人体运动跟踪系统在康复监测中的潜力吸引了众多的关注(周和胡, 2008)。几种人体运动跟踪系统在工业和学术界已被提到研究日程。
如图1中描述的,人体运动跟踪系统可以被分为可视与非可视两种。可视的人体运动跟踪系统( Moeslund和Granum , 2001)通过组合几个从不同角度记录病人情况的相机数据,对患者的身体和四肢进行三维定位。无标记系统(冈萨雷斯 - 奥尔特加等人, 2010)跟踪人体的临界,而有标记的系统,如CODA或Qualisys,则跟踪附着在患者身上的反光标记(固定标记)或者发光二极管(活动标记)。由于其准确的定位(误差约1mm周,胡, 2008)这种系统在康复监测领域已显示出可喜的业绩。然而,它们却还存在部分问题:价格昂贵、有攻击性、阻塞和光线问题。
基于机器人的解决方案( Yoon等, 2010)是指:病人他的四肢固定上一个机器人去执行几个运动模式。在该机器人移动、引导或只是扰乱了肢体的运动的同时,测量运动的数据,如加速度和力(Duschau - Wicke等, 2010)。这种系统适合于患有严重障碍无法自行练习的病人。然而,它们昂贵,笨重,并且在门诊或家庭中不能使用。
为了避免可视系统中固有的阻塞和视线的问题( Zhou和胡, 2008),传感器已被用于运动跟踪(Wong等人,2007)。在基于传感器的系统中,患者佩戴几个小的节点,这些节点能够评估人体的运动而不干扰其自然行为。这些节点组合成网,悄悄地收集关于位置、运动、方向和生理状态的信息。如该图2所示,一个节点是由几个传感器组成,用于数据采集,有记忆功能的微控制器用于数据处理,一个无线电收发信机进行数据传输,电池则对所有电路供电。使用传感器可以显着减少康复监测系统的成本和规模,并打开新的局面。
生物医学、生物力学和计算机科学界的研究人员一直在为无线传感器网络的发展做出很大的努力,并为康复治疗的发展带来了一系列的突破。许多团队已成功开发出一些工作系统并且获得了早期临床结果。事实上,无线传感器网络早已被用于一些康复治疗中,如中风康复治疗、平衡训练、帕金森氏病和远程康复治疗。这一切都归功于这项技术的以下几个优势:可长期监测、低成本,可快速部署,具有自我组织能力和无线传感器网络的灵活性。
在本文中,对于无线传感器网络在康复监测中的应用,我们将重点讨论关键的科学技术挑战和设计注意事项。参与深入调查、分析和讨论工作的人员分别来
自电子学、生物力学和计算机科学界。我们的目标是收集鼓励工程师,临床医生和电脑科学家在这一领域携手合作的信息。此外,我们目前仍然打开,并给未来的研究工作的潜在方向跨学科的挑战和问题。
我们的目标是收集有用的信息,鼓励工程师、临床医师和计算机科学家在这一领域携手合作。同时我们也提出了一些跨学科的挑战和问题,并为未来此领域的研究指明了方向。本文的结构如下:在第2节中,我们提出了相关的工程。在第3节中,我们对无线传感器网络在康复监测中不同的临床应用进行了分类,并指出各自的优势和内在特征。在第4节中,我们讨论了管理这些系统的设计注意事项和问题。在第5节中,我们调查无线传感器网络应用于康复治疗的现状。在第6节,我们提出了研究面临的挑战,并对未来工作提供了方向。在最后的第7节中,我们对本文进行了一个总结。
2.相关的研究
关于康复治疗的人体运动跟踪系统有许多调查(周和胡,2008),这些调查审查了一些系统,包括现有的可视人体运动跟踪系统以及可能会应用在人体姿势和运动分析的传感器。但是,这些都没有考虑到无线传感器网络技术。
有人在2010年的Pantelopoulos和Bourbakis杂志中, 对用于健康监护的可穿戴式生物传感器进行了论述。同样,在无线传感器网络的人体生理监护方面,浩和福斯特(2008)对其发展进行了综合的论述。 最近有篇文章(Ko等人,2010)描述了几个有前途的无线传感器网络的医疗保健应用,并其在医疗保健服务中所面临的关键技术挑战。阿朗达尔和埃尔索伊(2010)将现有的无线传感器网络的医疗保健分为以下五类:日常生活监护,移动活动检测, 位置跟踪,药物摄入量监护和健康状况监测。所有这些研究广泛地涵盖了各项医疗保健服务,但他们没有考虑无线传感器网络在康复医疗中的运用。
康复监测可能看起来是保健监测的一种特殊情况。然而,传统的用于医疗保健的无线传感器网络并没有满足康复医疗内建的应用程序需求(参见3.2.1节)。事实上,无线传感器网络所具有的这些特点:传感器多样化、多传感器数据融合、对患者的实时反馈和虚拟现实集成,使得无线传感器网络的在康复医疗中成为一个特定研究领域,而这也是考虑了其在软件、硬件、通信和结构的独特设计。最近的一篇评论文章( Patel等al.2012 )总结一般康复医疗领域中可穿戴技术的临床应用,其所描述的应用包括卫生、健康、安全、家庭康复、治疗效果的评估和疾病的早期发现。然而,这些作者目前的研究没有参考以前的研究成果。此外,他们也没有提出康复监测的科学技术挑战。身体区域网络(BAN)是无线传感器网络用于医疗保健设备的一个具体技术。虽然最近有相关的一些调查,(陈等,2011;。曹等,2009;。Latre等人,2011;乌拉等,2010),但是它们主要研究点在硬件和物理层方面(如天线,身内网络的干扰和信号传播模型)。
我们工作的贡献是多方面的。首先,我们提出将无线传感器网络应用于康复监测,并解释了其与传统的无线传感器网络应用于医疗保健的独特性。第二,我们确定了支配这些系统的设计注意点和难题。第三,我们回顾了现有的无线传感器网络应用于康复治疗的成果,讨论了他们的设计目标。第四,我们确定开放的研究课题,并为未来的工作指明了几个方向。
- 无线传感器网络应用于康复治疗
无线传感器网络应用于康复治疗已经有了好几个临床应用。在这一章节,我们对这些不同的应用进行了一个分类。同时,我们还着重强调了这项技术会带来的好处。最后,我们解释了其与传统的无线传感器网络应用于医疗保健的独特性。
3.1.临床应用的分类
无线传感器网络应用于康复治疗的主要目标是捕捉患者姿势移动,以此达到在康复治疗中监视其运动神经的活动。其临床应用可能会包括认知康复治疗,如认知障碍或脑损伤的治疗,以及运动神经的康复,如中风后康复,手术后康复,事故后或疾病后的康复。
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[29020],资料为PDF文档或Word文档,PDF文档可免费转换为Word
您可能感兴趣的文章
- 饮用水微生物群:一个全面的时空研究,以监测巴黎供水系统的水质外文翻译资料
- 步进电机控制和摩擦模型对复杂机械系统精确定位的影响外文翻译资料
- 具有温湿度控制的开式阴极PEM燃料电池性能的提升外文翻译资料
- 警报定时系统对驾驶员行为的影响:调查驾驶员信任的差异以及根据警报定时对警报的响应外文翻译资料
- 门禁系统的零知识认证解决方案外文翻译资料
- 车辆废气及室外环境中悬浮微粒中有机磷的含量—-个案研究外文翻译资料
- ZigBee协议对城市风力涡轮机的无线监控: 支持应用软件和传感器模块外文翻译资料
- ZigBee系统在医疗保健中提供位置信息和传感器数据传输的方案外文翻译资料
- 基于PLC的模糊控制器在污水处理系统中的应用外文翻译资料
- 光伏并联最大功率点跟踪系统独立应用程序外文翻译资料
