在线学习的表现:在线学习参与度与学生成绩外文翻译资料

 2022-12-27 19:52:22

在线学习的表现:在线学习参与度与学生成绩

原文作者 Jo Davies amp; Martin Graff 单位 the University of Glamorgan

摘要:在网络课程的学习中,学习者之间互动的有益性已经被充分阐述及说明。事实上,我们通常认为在线讨论的目的是促进以学生为中心的学习。因此,我们建议应该合理地转化在线讨论的有益性为提高学生的表现。本研究对122名大学生进行了在线互动的频率调查,并与期末成绩进行了比较。研究结果显示,在线互动的增加并不会显著提高学生成绩,但在课程中成绩不及格的学生往往互动的频率较低,同时笔者也讨论了在线互动中可能具有影响的其他因素。

关键词:在线学习表现;参与度;学生成绩

研究背景

有人认为,在线学习课程中的互动促进了以学生为中心的学习,鼓励更广泛的学生参与,也可以促进比传统面对面课程更深入、更合理的讨论( Karayan amp; Crowe,1997;Smith amp; Hardaker,2000)。进一步的研究也证明了在线协作环境的好处。例如,Citera(1988)提出,在线讨论鼓励更多课堂互动频率更低的学生在更大程度上参与课堂互动与交流。此外,Warschauer(1997)认为与面对面交流相比,在在线环境中,个人之间的现实接触机会更少,面对面而产生的压力也更小。实际上,学习者之间缺乏密切的互动可能会很多产生不利的影响,这是因为学习者会在学习过程中体验到孤立感。Kazmer、Robbins和Shoemaker(2000)报告了这一发现,在他们的研究中,没有与小组中的其他学习者建立在线联系的参与者比建立联系的学习者会感到更多地孤立感与压力。

Rovai(2002)认为在线互动重要性的一个原因是学习者可以在线学习中体验到一种“社区感”,他们享受着相互依存、信任感和社区成员之间的互动,这表明社区成员有着共同的目标和价值观。许多研究分析并阐述了在线参与度在提高学生参与课堂、提高讨论质量等方面的有益影响,同时提出了许多关于在线互动在培养在线社区方面的有益影响的研究。但我们仍然需要深入讨论并研究,在线参与度在提高学生学习能力方面真正有影响,这一点可以由以课程的最终成绩来观测的。因此,本研究考察了122名商学院本科一年级学生的在线学习参与程度,并将互动程度与课程最终成绩进行了比较。

研究方法

研究对象

研究人员对122名学生(70名男性,52名女性)在第一年学习期间的每个模块进行了测试。所有学生都参加了商科学位课程,其中,97名学生参与了全日制学习的6个模块,25名学生参与了非全日制的3个模块。

研究步骤

参与者使用“黑板”环境12个月,并与他们去年的成绩进行比较。“黑板”统计数据是在“黑板”环境的四个主要区域,四个主要区域分别为:交流、主要内容、学生和小组区域。

研究数据分析

虚拟教室和讨论板可以通过两种途径访问:小组和交流区。因此,本研究将学生对小组讨论的参与度和他们对交流区域的访问结合起来,以此来更好地表示他们对网络讨论的参与程度。访问主要内容区和访问学生区也被结合起来,用于表示“黑板”活动,而不参与小组讨论。

对于每个模块的每个学生,本研究都计算了与通信/组访问相关的总“黑板”点击率的比例,将这个比例与一年级的模块成绩相比较。如果在线参与讨论论坛是一种有效的学习辅助手段,那么花更多时间在交流/小组领域的学生应该取得更好的成绩。为了更好地进行分析,将根据每个模块的成绩对学生进行分组。按模块划分的学生人数见表1。

表 1 每个模块的高/中/低/不及格人数大小

分组

EB1S01:

企业家以及环境

EB1S02:

创业以及机会识别

EB1S03:

小型企业资源

EB1S04:

创业能力

EB1S05:

管理电子商务

EB1S06:

毕业企业项目

高分

(gt;65%)

22

37

31

30

20

12

中等

(54–65%)

31

27

22

26

20

20

低分

(40–53%)

21

15

10

27

14

17

不及格

(lt;40%

24

22

22

16

16

31

研究结果

克鲁斯卡-沃利斯测试是对每个年级分组的总体“黑板”使用的差异进行的。平均排名得分的差异见表2。

表 2 每个年级分组“黑板”使用总量的平均等级

分组

EB1S01

EB1S02

EB1S03

EB1S04

EB1S05

EB1S06

高分

(gt;65%)

57.64

61.78

56.21

62.10

50.90

50.29

中等

(54–65%)

67.52

62.96

52.27

60.19

41.65

49.47

低分

(40–53%)

43.57

40.93

45.05

43.15

32.07

42.82

不及格

(lt;40%

23.96

25.05

14.18

22.31

11.56

29.65

plt;0.001

plt;0.001

plt;0.001

plt;0.001

plt;0.001

plt;0.001

直觉上,我们会认为一个学生越活跃,他或她就会表现得越好,这是由获得的结果的一致性和显著性所决定的。总的来说,可以认为学生的平均成绩会随着年级的增加而增加,分数较高和分数普通的学生比不及格的学生在进入“黑板”的次数方面更多。不足为奇的是,那些不及格的学生在“黑板”活动方面也一直排名最低。这表明,以“黑板”的使用来衡量,更高的参与度可能会导致模块等级方面的更好表现。分数较高学生和分数普通学生的平均水平之间没有一致或显著的差异,这表明单纯的活动水平并不能区分高及格学生和中等及格学生。因此,这里的主要问题是活动的性质是否会提高绩效,即小组讨论和互动是否会带来更好的成绩。“黑板”点击总数的百分比为学生花在互动领域所占的比例。与交互区域相关的“黑板”使用的平均比例如下表3所示。

表 3交互区域中“黑板”使用总量的平均比例

模式

高分(%)

中等(%)

低分(%)

不及格(%)

EB1S01

90.39

91.23

90.04

75.07

EB1S02

86.75

82.11

75.57

65.49

EB1S03

68.66

63.52

59.07

31.42

EB1S04

78.63

80.53

78.09

67.72

EB1S05

70.55

66.29

65.80

57.48

EB1S06

51.68

53.87

45.26

35.57

表3显示,在互动领域使用“黑板”的平均比例在高和中等成绩的学生中一直是最高的,而在不及格的学生中则一直是最低的。在获得较高或者中等分数的学生之间,互动使用比例的平均差异很小。当学生一年级的平均成绩与所有模块的平均比例使用率相比较时,一个更清晰的模式就会显现出来。图1显示,对于达到A和B年级的学生来说,大约80%的“黑板”使用在交互区域。这个数字大约是77%的学生取得C和D成绩,69%的学生不及格。

Kruskal-Wallis测试是针对每个年级分组及模块的交互区域比例使用的差异进行的。平均排名得分的差异见表4。

对于学习模块EB1S03而言(通常是小企业资源配置),获得F级的学生与通过的学生之间存在显著差异(X2=12.325,p=0.006)。同样,在学习模块EB1S04(通常指向创业能力)中,不及格和及格的学生之间也存在显著性差异(X2=7.104,业务管理模块(EB057.0,p=0.05)。那些不及格的学生在小组和交流领域花在活跃的“黑板”时间的比例要低得多,在任何模块的组之间都存在显著差异。

图 1交互使用与一年级平均表现的比例

表 4反映组和通信区域访问的“黑板”总点击率的平均排名

分组

EB1S01

EB1S02

EB1S03

EB1S04

EB1S05

EB1S06

高分

(gt;65%)

17.60

44.06

41.23

19.46

31.11

35.36

中等

(54–65%)

24.50

41.60

39.98

22.10

33.07

35.00

低分

(40–53%)

21.70

39.18

32.56

<!--

剩余内容已隐藏,支付完成后下载完整资料


Performance in e-learning: online participation and student grades

Jo Davies and Martin Graff

摘要:The beneficial effects of learners interacting in online programmes have been widely reported. Indeed, online discussion is argued to promote student-centred learning. It is therefore reasonable to suggest that the benefits of online discussion should translate into improved student performance. The current study examined the frequency of online interaction of 122 undergraduates and compared this with their grades at the end of the year. The findings revealed that greater online interaction did not lead to significantly higher performance for students achieving passing grades; however, students who failed in their courses tended to interact less frequently. Other factors that may be salient in online interactions are discussed.

Introduction

It has been suggested that interaction in online learning programmes promotes student-centred learning, encourages wider student participation, and produces more in-depth and reasoned discussions than traditional face-to-face programmes (eg, Karayan amp; Crowe, 1997; Smith amp; Hardaker, 2000).

Further studies also provide evidence to support the benefits of online collaborative environments. For example, online discussions encourage more reticent individuals to participate to a greater extent (Citera, 1988). Furthermore, Warschauer (1997) advocates interaction in online environments; as here, there is less opportunity for intimidation between individuals and also less time pressure on them than in face-to-face settings.

Conversely, lack of close interaction between learners may have adverse consequences, possibly because learners experience feelings of isolation. Indeed, such a finding was reported by Haythornthwaite, Kazmer, Robbins and Shoemaker (2000), who suggested that the participants in their study who failed to make online connections with other learners in their group reported feeling isolated and more stressed than those who made such connections.

One reason for the importance of online interaction is because learners experience alsquo;sense of communityrsquo; (Rovai, 2002), enjoying mutual interdependence and a sense of trust and interaction among community members, which means that the members of the community have shared goals and values.

There is therefore much research that reports on the beneficial effects of online participation in terms of widening student involvement, improving the quality of discussions compared with traditional face-to-face interactions, as well as research on the beneficial effects of online interaction in terms of fostering an online community.

However, what needs to be investigated is whether online interaction has any tangible benefits in terms of improving student learning as measured by final grades on a course. The current study, therefore, examines the level of online participation of 122 under-graduates during their 1st year of a business degree, comparing the level of interaction with their grades at the end of the year.

Method

Participants

The performance and online engagement of 122 students (70 male, 52 female) were examined for each module taken during their 1st year of study. All students were enrolled in a business degree course. Ninety-seven students were studying full-time taking six modules, and 25 students were studying part-time taking three modules.

Procedure

The participants used the lsquo;blackboardrsquo; environment for a period of 12 months, and their usage of this was compared with their level-one grades.

The lsquo;blackboardrsquo; statistics was recorded for each student in four main areas of thelsquo;blackboardrsquo; environment: communication, main content, student, and group areas.

Data analysis

There are two routes through which the virtual classroom and discussion boards may be accessed, either through the group or the communication areas. Therefore, for the purpose of this analysis, the studentsrsquo; access to the group area and their access to the communication areas were combined and used to represent the degree of participation in online discussion. Access to the main content area and access to the student area were also combined and used to represent the lsquo;blackboardrsquo; activity without participating in group discussions.

The proportion of the total lsquo;blackboardrsquo; hits, which relates to communication/group access, was calculated for each student for each module. This proportion was compared with the year-1 module grade. If online participation in discussion forums is an effective learning aid, then it is expected that those students who proportionately spend more time in communication/group areas should achieve better module grades.

To aid analysis, the students were allocated to groups based on the grades achieved per module. The number of students in each group by module is shown in Table 1.

Results

A Kruskal–Wallis test was performed on the differences in overall lsquo;blackboardrsquo; usage, for each grade grouping. Differences in the mean rank scores are shown in Table 2.

Intuitively, it makes sense that the more active a student is, the better he or she will perform, and this is born out by the consistent and significant pattern of results obtained. In general, the mean ranks increased across the grade bands with people in the high-pass and medium-pass bands showing greater activity in terms of the number of times they accessed lsquo;blackboardrsquo; than students with low passing grades. Not surprisingly, the students who failed also consistently ranked lowest in terms of lsquo;blackboardrsquo; activity. This suggests that greater activity, as measured by lsquo;blackboardrsquo; usage, is likely to lead to a better performance in terms of module grade.

lt;

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[269336],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版