基于金属铂的固定化酶反应器用于miR-21检测文献综述

 2022-12-28 10:10:56

开题报告内容:(包括拟研究或解决的问题、采用的研究手段及文献综述,不少于2000字)

实验思路

MiRNA在癌症早期诊断和治疗中具有重要价值,其中miR-21在多种肿瘤细胞中都具有过表达的倾向1。通常对于miRNA的检测多使用电化学方法,可通探针链miRNA与靶链杂交后暴露铂纳米粒子复合物,催化氧化还原反应,监测还原电流来确定目标物浓度2-4。或电化学免疫传感器对修饰过的miRNA进行检测5

Pt NPs具有模拟酶的活性,其中一种模拟酶的活性表现为过氧化物酶样活性6。实验中使用H2PtCl6合成的为Pt NCs,这些Pt NCs的过氧化物酶模拟活性可能源于它们在TMB和H2O2之间加速电子转移的特性7,纳米簇由于尺寸比纳米颗粒小而不稳定,因此,部分实验中添加ssDNA来起到支架的作用8。但是,推测正是由于DNA的加入,以铂为基础的纳米材料的模拟酶活性受到诸如miR-21等可作用于ssDNA的材料的抑制,如甲基化DNA上的碱基等8-11。基于此,可以利用这种抑制作用对miR-21进行定量。模拟酶具有生物相容性,且其功能多样,又因为其由数个金属原子组成的亚纳米级结构而具有独特的化学特性12, 13,在极端条件下的良好稳定性和永久催化活性而被应用,以替代天然的酶9, 14。但是,由于这种模拟酶不能通过普通的灭活酶的途径来终止反应,且为了使其便于回收利用,使用磁分离,希望可以制备基于PDA-MNPs的固定化DNA-Ag/Pt NCs的过氧化物酶反应器,用于对miR-21定量检测。MNPs与DNA-Ag/Pt NCs之间选用PDA连接,因为PDA表面上存在的官能团(即邻苯二酚和胺)增强了各种生物分子的结合力15

  1. 实验步骤:

1.1 DNA-Ag/Pt NCs的合成11, 16, 17

  • 探针ssDNA(序列5rsquo;-CCCCCCCCTCTCAACATCAGTCTGATAAGCTA-3rsquo;),需要 0.3nmol ssDNA, 用TE缓冲液(含1M Tris-HCl和0.5 mL EDTA,pH 7.5)或TE buffer (1 ml of 1 M Tris-HCl (pH 7.5) and 0.2 ml EDTA (0.5 M) was added to deionized water to reach a final volume of100 ml ofsolution)8制备寡核苷酸储备液(gt;3ml)。
  • 将30 micro;L磷酸盐缓冲液(20.0 mM,pH7.4)中的AgNO3(8 micro;L,8 mM),K2PtCl4(9 micro;L,2 mM)和ssDNA(3 micro;L,100 mM)充分混合。(此处可以使用柠檬酸缓冲溶液17) 然后,在剧烈搅拌下将先前新鲜制备的8micro;L NaBH 4(8mM)加入到溶液中。 然后,将所制备的溶液在黑暗中于37℃孵育30分钟。 最后,将混合物在黑暗中于室温温育3小时。制得DNA-Ag / Pt NCs储存在4 C下以备后用。

1.2 DNA-Ag/Pt NCs的活性测定:

  • 上述制备得到的5.1 mM的DNA-Ag / Pt NCs,5.8mu;L,然后,添加1 mL的TMB(10mM)和1 mL的H2O2(10 mM),最后将所得溶液用于652nm(A652)的吸收光谱测量。得到游离过氧化物模拟酶的活性。

2.PDA/MNPs的制备15, 18-21

  • 将30.29 mg的多巴胺添加到250 mL的含有25mg Fe3O4 NP的10 mM PBS(pH 8.5)中。 在室温下摇动4小时后,通过离心获得Fe3O4 @PDA NC,并用水洗涤3次。干燥。

3.1固定化酶的合成:

  • 将新鲜制备的PD‐MNPs分散在去离子水中,形成PD-MNPs溶液(6mL,4.2 mg / mL)在冰浴中于0°C下添加到DNA-Ag / Pt NCs溶液(180micro;L,5.1 mM)中。 在100 rpm下搅拌12小时(在0°C下)后,将DNA-Ag / Pt NCs负载的沉淀物用去离子水洗涤并收集。
  • 定量为:m (固定化的酶量)= m0-C1V1-C2V2(酶总量-残余液中酶量-洗液中的酶量)

3.2固定化酶的活性测定:

  • 上述制备得到的固定化酶58mu;L(5.1 mM),添加10 micro;L的TMB(10mM)和10micro;L的H2O2(10 mM),最后将所得溶液用于652nm(A652)的吸收光谱测量。得到固定化的过氧化物模拟酶得活性。

4.1 miRNA-21的比色测定,绘制标曲:

  • 将DNA-Ag / Pt NCs @ PDS-MNP分散液58micro;L(5.1 mM)中加入不同浓度的miRNA-2122(TE缓冲液(含1M Tris-HCl和0.5 mL EDTA,pH 7.5)制备寡核苷酸储备液)(范围从空白,1 pM,10 pM ,50 pM ,100 pM ,300 pM ,500 pM,700pM)接下来,将混合溶液在37°C下孵育30分钟,然后分别添加10mL TMB(10 mM)和10mL H2O2(10 mM),最后将所得溶液用于652 nm(A652)进行分析。绘制标准曲线。

4.2miRNA-21的比色测定,细胞中miR-21的测定:

  • A549细胞,方法一23:温育48小时后收集细胞,并用PBS(10mM,pH 7.4)洗涤两次,并用血细胞计数器计数。对细胞计数后,选用RNA提取试剂盒对细胞进行提取。方法二24:温育48小时后收集这些细胞,并用PBS(10mM,pH 7.4)洗涤两次,并用血细胞计数器计数后,首先将收获的细胞在37 ℃和液氮中循环3分钟三次。然后在剧烈摇动15秒钟后,将200mu;LPBS(10 mM,pH 7.4)和40mu;L氯仿添加到含有细胞裂解液的溶液中。之后,将混合物在室温下保持3分钟。之后,然后将所得混合物在12000 rpm下离心15分钟以收集上清液,然后向上清液中添加100mu;L异丙醇。将该混合物在室温下保持10分钟。通过以13000 rpm离心10分钟沉淀RNA,然后将所得的RNA重新分散。
  • 将DNA-Ag / Pt NCs @ PDS-MNP分散液58micro;L中加入RNA分散液(TE缓冲液)接下来,将混合溶液在37°C下孵育30分钟,然后分别添加10mL TMB(10 mM)和10mL H2O2(10 mM),最后将所得溶液用于652 nm(A652)进行分析。得到miR-21的浓度。

4.3miRNA-21的比色测定,血浆中的miR-21检测:

  • 真实样品的分析先前描述的方法是收集动物血清样品进行的。将不同浓度的miRNA-21(范围从空白,1 pM,10 pM ,50 pM ,100 pM ,300 pM ,500 pM,700pM)掺入血清样品中,并在室温下涡旋2分钟。 用超纯水稀释(10倍)后,将DNA-Ag / Pt NCs添加到样品中以在存在干扰分子的情况下检测miRNA-21。

二、试剂:

寡核苷酸ssDNA(序列5rsquo;-CCCCCCCCTCTCAACATCAGTCTGATAAGCTA-3rsquo;)、miRNA-21 5rsquo;–UAGCUUAUCAGACUGAUGUUGA–3rsquo;、TE缓冲液(含1M Tris-HCl和0.5 mL EDTA,pH 7.5);带有羧酸基团(约15 nm)的水溶性氧化铁(Fe3O4)纳米颗粒、多巴胺、硝酸银(AgNO3),四氯铂酸二钾(K2PtCl4)、硼氢化钠(NaBH4),3,3,5,5-四甲基联苯胺(TMB),H2O2、磷酸盐缓冲液、紫外-可见分光光度计;A549细胞、血细胞计数器、RNA提取试剂盒(或液氮、氯仿、异丙醇)、动物血清。

柠檬酸amp;二甲亚砜

三、计划:

时间阶段

研究计划

预期结果

04.23-04.30

购买试剂;整理文献

列出所需注意摸索的实验条件

05.04-05.08

合成模拟酶并进行验证

得到有良好催化活性的模拟酶DNA-Ag/Pt NCs

05.09-05.15

固定化模拟酶

得到DNA-Ag / Pt NCs @ PDS-MNP,并定量其催化活性

05.16-05.24

RNA提取及miR-21含量测定

绘制得到比色测定miRNA-21的标准曲线,通过标准曲线对细胞内miR-21进行定量。

05.25-06.01

优化实验条件

调整数据波动较大的实验条件,减小波动

06.02-06.07

完成毕业论文

整理数据,书写毕业论文

06.08-06.10

修改和完善毕业论文

完成毕业论文

1. Hwang, D. W.; Kim, H. Y.; Li, F.; Park, J. Y.; Kim, D.; Park, J. H.; Han, H. S.; Byun, J. W.; Lee, Y. S.; Jeong, J. M.; Char, K.; Lee, D. S., In vivo visualization of endogenous miR-21 using hyaluronic acid-coated graphene oxide for targeted cancer therapy. Biomaterials 2017, 121, 144-154.

2. Spain, E.; Adamson, K.; Elshahawy, M.; Bray, I.; Keyes, T. E.; Stallings, R. L.; Forster, R. J., Hemispherical platinum : silver core : shell nanoparticles for miRNA detection. Analyst 2017, 142 (5), 752-762.

3. Liang, Z.; Ou, D.; Sun, D.; Tong, Y.; Luo, H.; Chen, Z., Ultrasensitive biosensor for microRNA-155 using synergistically catalytic nanoprobe coupled with improved cascade strand displacement reaction. Biosens Bioelectron 2019, 146, 111744.

4. Mohammadniaei, M.; Go, A.; Chavan, S. G.; Koyappayil, A.; Kim, S. E.; Yoo, H. J.; Min, J.; Lee, M. H., Relay-race RNA/barcode gold nanoflower hybrid for wide and sensitive detection of microRNA in total patient serum. Biosens Bioelectron 2019, 141, 111468.

5. Ou, X.; Pu, Q.; Sheng, S.; Dai, T.; Gou, D.; Yu, W.; Yang, T.; Dai, L.; Yang, Y.; Xie, G., Electrochemical competitive immunodetection of messenger RNA modified with N6-methyladenosine by using DNA-modified mesoporous PtCo nanospheres. Mikrochim Acta 2019, 187 (1), 31.

6. Peng, Y.; Shen, H.; Tang, S.; Huang, Z.; Hao, Y.; Luo, Z.; Zhou, F.; Wang, T.; Feng, W., Colorimetric determination of BCR/ABL fusion genes using a nanocomposite consisting of Au@Pt nanoparticles covered with a PAMAM dendrimer and acting as a peroxidase mimic. Mikrochim Acta 2018, 185 (8), 401.

7. Jin, L.; Meng, Z.; Zhang, Y.; Cai, S.; Zhang, Z.; Li, C.; Shang, L.; Shen, Y., Ultrasmall Pt Nanoclusters as Robust Peroxidase Mimics for Colorimetric Detection of Glucose in Human Serum. Acs Applied Materials amp; Interfaces 2017, 9 (11), 10027-10033.

8. Borghei, Y. S.; Hosseinkhani, S., Aptamer-based colorimetric determination of early-stage apoptotic cells via the release of cytochrome c from mitochondria and by exploiting silver/platinum alloy nanoclusters as a peroxidase mimic. Mikrochim Acta 2019, 186 (12), 845.

9. Chen, W.; Fang, X.; Ye, X.; Wang, X.; Kong, J., Colorimetric DNA assay by exploiting the DNA-controlled peroxidase mimicking activity of mesoporous silica loaded with platinum nanoparticles. Mikrochim Acta 2018, 185 (12), 544.

10. Bai, Y. Y.; Wu, Z.; Xu, C. M.; Zhang, L.; Feng, J.; Pang, D. W.; Zhang, Z. L., One-to-Many Single Entity Electrochemistry Biosensing for Ultrasensitive Detection of microRNA. Anal Chem 2020, 92 (1), 853-858.

11. Fakhri, N.; Abarghoei, S.; Dadmehr, M.; Hosseini, M.; Sabahi, H.; Ganjali, M. R., Paper based colorimetric detection of miRNA-21 using Ag/Pt nanoclusters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 227.

12. Weiwei; Chen; Xueen; Fang; Xin; Ye; Xinjun; Wang; Jilie; Kong, Colorimetric DNA assay by exploiting the DNA-controlled peroxidase mimicking activity of mesoporous silica loaded with platinum nanoparticles.

13. Maacute;ria; Szaboacute;; Gyula; Halasi; Andraacute;s; Saacute;pi; Koppaacute;ny; Juhaacute;sz; Jaacute;nos, Outstanding Activity and Selectivity of Controlled Size Pt Nanoparticles Over WO? Nanowires in Ethanol Decomposition Reaction.

14. Li, Y.; Yang, L.; Xu, J.; Zhou, H.; Gao, Z.; Song, Y., Pt nanoparticle-coupled WO2.72 nanoplates as multi-enzyme mimetics for colorimetric detection and radical elimination. Anal Bioanal Chem 2020, 412 (2), 521-530.

15. Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J.; Yang, H. H.; Liu, G.; Chen, X., Multifunctional Fe(3)O(4)@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8 (4), 3876-83.

16. Kermani, H. A.; Hosseini, M.; Miti, A.; Dadmehr, M.; Zuccheri, G.; Hosseinkhani, S.; Ganjali, M. R., A colorimetric assay of DNA methyltransferase activity based on peroxidase mimicking of DNA template Ag/Pt bimetallic nanoclusters. Anal Bioanal Chem 2018, 410 (20), 4943-4952.

17. Wu, F.; Lin, Q.; Wang, L.; Zou, Y.; Chen, M.; Xia, Y.; Lan, J.; Chen, J., A DNA electrochemical biosensor based on triplex DNA-templated Ag/Pt nanoclusters for the detection of single-nucleotide variant. Talanta 2020, 207, 120257.

18. Liang, W.; Wang, G.; Wang, B.; Zhang, Y.; Guo, Z., Superhydrophobic and Magnetic Fe3O4/Polydopamine Composite Nanoparticle and Its Oil/Water Separation. Acta Chimica Sinica 2013, 71 (04).

19. Ramezanpour, M.; Raeisi, S. N.; Shahidi, S. A.; Ramezanpour, S.; Seidi, S., Polydopamine-functionalized magnetic iron oxide for the determination of trace levels of lead in bovine milk. Anal Biochem 2019, 570, 5-12.

20. Deng, X.; Cao, S.; Li, N.; Wu, H.; Smith, T. J.; Zong, M.; Lou, W., A magnetic biocatalyst based on mussel-inspired polydopamine and its acylation of dihydromyricetin. Chinese Journal of Catalysis 2016, 37 (4), 584-595.

21. Ren, Y.; Rivera, J. G.; He, L.; Kulkarni, H.; Lee, D. K.; Messersmith, P. B., Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 2011, 11, 63.

22. Zhang, H.; Wang, K.; Bu, S.; Li, Z.; Ju, C.; Wan, J., Colorimetric detection of microRNA based on DNAzyme and nuclease-assisted catalytic hairpin assembly signal amplification. Mol Cell Probes 2018, 38, 13-18.

23. Zheng, C.; Zheng, A. X.; Liu, B.; Zhang, X. L.; He, Y.; Li, J.; Yang, H. H.; Chen, G., One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun (Camb) 2014, 50 (86), 13103-6.

24. Li, J.; Liu, W.; Wu, X.; Gao, X., Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 2015, 48, 37-44.

学生签名: 刘山标 2020年 03月 20 日

指导教师意见:

指导教师签名: 年 月 日

所在教研室审查意见:

负责人签名: 年 月 日

填写说明

1.指导教师意见填写对文献综述的评语,对本课题的深度、广度及工作量的意见和对论文结果的预测;

2.所在教研室审查意见包括对指导教师意见的认定和是否同意开题等。

1. Hwang, D. W.; Kim, H. Y.; Li, F.; Park, J. Y.; Kim, D.; Park, J. H.; Han, H. S.; Byun, J. W.; Lee, Y. S.; Jeong, J. M.; Char, K.; Lee, D. S., In vivo visualization of endogenous miR-21 using hyaluronic acid-coated graphene oxide for targeted cancer therapy. Biomaterials 2017, 121, 144-154.

2. Spain, E.; Adamson, K.; Elshahawy, M.; Bray, I.; Keyes, T. E.; Stallings, R. L.; Forster, R. J., Hemispherical platinum : silver core : shell nanoparticles for miRNA detection. Analyst 2017, 142 (5), 752-762.

3. Liang, Z.; Ou, D.; Sun, D.; Tong, Y.; Luo, H.; Chen, Z., Ultrasensitive biosensor for microRNA-155 using synergistically catalytic nanoprobe coupled with improved cascade strand displacement reaction. Biosens Bioelectron 2019, 146, 111744.

4. Mohammadniaei, M.; Go, A.; Chavan, S. G.; Koyappayil, A.; Kim, S. E.; Yoo, H. J.; Min, J.; Lee, M. H., Relay-race RNA/barcode gold nanoflower hybrid for wide and sensitive detection of microRNA in total patient serum. Biosens Bioelectron 2019, 141, 111468.

5. Ou, X.; Pu, Q.; Sheng, S.; Dai, T.; Gou, D.; Yu, W.; Yang, T.; Dai, L.; Yang, Y.; Xie, G., Electrochemical competitive immunodetection of messenger RNA modified with N6-methyladenosine by using DNA-modified mesoporous PtCo nanospheres. Mikrochim Acta 2019, 187 (1), 31.

6. Peng, Y.; Shen, H.; Tang, S.; Huang, Z.; Hao, Y.; Luo, Z.; Zhou, F.; Wang, T.; Feng, W., Colorimetric determination of BCR/ABL fusion genes using a nanocomposite consisting of Au@Pt nanoparticles covered with a PAMAM dendrimer and acting as a peroxidase mimic. Mikrochim Acta 2018, 185 (8), 401.

7. Jin, L.; Meng, Z.; Zhang, Y.; Cai, S.; Zhang, Z.; Li, C.; Shang, L.; Shen, Y., Ultrasmall Pt Nanoclusters as Robust Peroxidase Mimics for Colorimetric Detection of Glucose in Human Serum. Acs Applied Materials amp; Interfaces 2017, 9 (11), 10027-10033.

8. Borghei, Y. S.; Hosseinkhani, S., Aptamer-based colorimetric determination of early-stage apoptotic cells via the release of cytochrome c from mitochondria and by exploiting silver/platinum alloy nanoclusters as a peroxidase mimic. Mikrochim Acta 2019, 186 (12), 845.

9. Chen, W.; Fang, X.; Ye, X.; Wang, X.; Kong, J., Colorimetric DNA assay by exploiting the DNA-controlled peroxidase mimicking activity of mesoporous silica loaded with platinum nanoparticles. Mikrochim Acta 2018, 185 (12), 544.

10. Bai, Y. Y.; Wu, Z.; Xu, C. M.; Zhang, L.; Feng, J.; Pang, D. W.; Zhang, Z. L., One-to-Many Single Entity Electrochemistry Biosensing for Ultrasensitive Detection of microRNA. Anal Chem 2020, 92 (1), 853-858.

11. Fakhri, N.; Abarghoei, S.; Dadmehr, M.; Hosseini, M.; Sabahi, H.; Ganjali, M. R., Paper based colorimetric detection of miRNA-21 using Ag/Pt nanoclusters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 227.

12. Weiwei; Chen; Xueen; Fang; Xin; Ye; Xinjun; Wang; Jilie; Kong, Colorimetric DNA assay by exploiting the DNA-controlled peroxidase mimicking activity of mesoporous silica loaded with platinum nanoparticles.

13. Maacute;ria; Szaboacute;; Gyula; Halasi; Andraacute;s; Saacute;pi; Koppaacute;ny; Juhaacute;sz; Jaacute;nos, Outstanding Activity and Selectivity of Controlled Size Pt Nanoparticles Over WO? Nanowires in Ethanol Decomposition Reaction.

14. Li, Y.; Yang, L.; Xu, J.; Zhou, H.; Gao, Z.; Song, Y., Pt nanoparticle-coupled WO2.72 nanoplates as multi-enzyme mimetics for colorimetric detection and radical elimination. Anal Bioanal Chem 2020, 412 (2), 521-530.

15. Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J.; Yang, H. H.; Liu, G.; Chen, X., Multifunctional Fe(3)O(4)@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8 (4), 3876-83.

16. Kermani, H. A.; Hosseini, M.; Miti, A.; Dadmehr, M.; Zuccheri, G.; Hosseinkhani, S.; Ganjali, M. R., A colorimetric assay of DNA methyltransferase activity based on peroxidase mimicking of DNA template Ag/Pt bimetallic nanoclusters. Anal Bioanal Chem 2018, 410 (20), 4943-4952.

17. Wu, F.; Lin, Q.; Wang, L.; Zou, Y.; Chen, M.; Xia, Y.; Lan, J.; Chen, J., A DNA electrochemical biosensor based on triplex DNA-templated Ag/Pt nanoclusters for the detection of single-nucleotide variant. Talanta 2020, 207, 120257.

18. Liang, W.; Wang, G.; Wang, B.; Zhang, Y.; Guo, Z., Superhydrophobic and Magnetic Fe3O4/Polydopamine Composite Nanoparticle and Its Oil/Water Separation. Acta Chimica Sinica 2013, 71 (04).

19. Ramezanpour, M.; Raeisi, S. N.; Shahidi, S. A.; Ramezanpour, S.; Seidi, S., Polydopamine-functionalized magnetic iron oxide for the determination of trace levels of lead in bovine milk. Anal Biochem 2019, 570, 5-12.

20. Deng, X.; Cao, S.; Li, N.; Wu, H.; Smith, T. J.; Zong, M.; Lou, W., A magnetic biocatalyst based on mussel-inspired polydopamine and its acylation of dihydromyricetin. Chinese Journal of Catalysis 2016, 37 (4), 584-595.

21. Ren, Y.; Rivera, J. G.; He, L.; Kulkarni, H.; Lee, D. K.; Messersmith, P. B., Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 2011, 11, 63.

22. Zhang, H.; Wang, K.; Bu, S.; Li, Z.; Ju, C.; Wan, J., Colorimetric detection of microRNA based on DNAzyme and nuclease-assisted catalytic hairpin assembly signal amplification. Mol Cell Probes 2018, 38, 13-18.

23. Zheng, C.; Zheng, A. X.; Liu, B.; Zhang, X. L.; He, Y.; Li, J.; Yang, H. H.; Chen, G., One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun (Camb) 2014, 50 (86), 13103-6.

24. Li, J.; Liu, W.; Wu, X.; Gao, X., Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 2015, 48, 37-44.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版