Commutation Torque Ripple Reduction in BLDC Motor Using PWM_ON_PWM Mode
Guangwei Meng, Hao Xiong, Huaishu Li Department of Electrical Engineering, Naval University of Engineering, Wuhan, China.
Abstract--The paper analyzes the steady commutation process of the BLDC motor using PWM mode, confirms the commutation time to keep noncommutation phase current amplitude constant during commutation period by way of PWM in the period to implement the compensation control to eliminate commutation torque ripple under both low speed and high speed operation, investigates the effect by PWM mode on a three-phase six-state 120° turn-on BLDC motor, and presents torque ripple compensation control in PWM_ON_PWM mode, which can not only entirelyeliminate torque ripple resulted from the current emerging in the turn-off phase during non-commutation period but also compensate torque ripple caused by the commutation current during commutation period.
Index Terms—BLDC motor, commutation, PWM, torque ripple.
I. INTRODUCTION
The BLDC motors have been widely used due to its features - a simple structure, good speed adjusting performance,high powerdensity, low noise and simple control, etc. It is a hotspot to suppress the torque ripple and improve the control performance of a BLDC motor with the trapezoidal back emf.
BLDC motors usually operate in all kinds of PWM modes, which not only affect the dynamic loss of power switches and radiation uniformity, but also influence the torque ripple. It is an effective way to suppress the torque ripple through changing dc bus chopper control to remain non-commutation phase current amplitude constant, but it results into a more complex topology [1]-[3]. It is just fit for low speed applications to control non-commutation phase current amplitude to regulate the commutation torque ripple [4]. It is analyzed about the influence resulted from PWM ON mode on the torque ripple in [5].The ideas in [1]-[3] are to adopt different suppression methods in different speed interval, but they donrsquo;t take the effect by PWM modes on the system in account. The predictive current, neural network control and active disturbance rejection control etc are introduced to suppress the torque ripple in [9]-[12], but the control algorithm is more complicated and harder for realization.
Depending on the commutation process of BLDC motors and the effect by PWM modes on the system, thepaper presents a torque ripple com-pensation control in PWM_ON_PWM mode at different speeds by seeking different PWM modulation ratios during commutation period as motor runs at low speed and high speed.The method retains the original to-pology, improves the control performance of the system dramatically,
and moreover is easy to realize.
II. ELECTROMAGNETIC TORQUE OF BLDC MOTOR
DURING COMMUTATION PROCESS
Assume that the BLDC motor is three-phase symmetrical and Y- connected, and neglect eddy currents and hysteresis losses, its equivalent circuit and main circuit are shown in Figure 1. r, L are the resistance andinductance of the stator windings respectively; are the counter emfs of the corresponding phase windings respectively; are the corresponding phase currents respectively.
(1)
The counter emf of every phase winding is a trapezoidal waveform with a flat-top width greater than or equal to 1200 electrical degree,
and its flat-top amplitude is Em. When the motor works in three-phase six-state 1200 turn-on mode, the currents donrsquo;t commutates instantaneously as a result of the inductanceof the armature winding. Take the power switch and rsquo;s turn-on to and rsquo;s turn-on for example. During the commutation, it is gained as follows
(2)
Suppose that the mechanical angular velocity of the rotor is Omega;, the toque can be obtained as follows during the commutation process.
(3)
It is obvious from (3) that the toque is proportional to the non-commutation phase current during commutation,i.e. the commutation torque ripple can be eliminated so long as non-commutation phase current remains constant during commutation.
III. COMMUTATION PROCESS WITHOUT CONSIDERING
EFFECT BY PWM AND ARMATURE WINDING RESISTANT
Assume that the circuit status changes from phase A and Crsquo;s turn-on to phase B and Crsquo;s turn-on, phase A current flows and decays to zero gradually, while phase B current increases to the maximum gradually and reaches its steady-state value.The circuit equation during commutation without considering the effect by PWM can be written as follows.
(4)
Compared with the winding time constant of a BLDC motor, PWM period can be thought small enough,and then.
So the effect of the armature winding resistant can be neglected. Moreover the initial and final values of every phase current equal every phase steady-state current value before and after the commutation. All phase currents during the commutation can be obtained from (1), (2) and(4).
(5)
Then the toque during the commutation can be written
(6)
From (5), the turn-off time off tsim; of phase A and the turn-on time on tsim; of phase B during the commutation process are
(7)
(8)
From (5)~(8), the commutation between two phases canrsquo;t be completed in the same time as , i.e. the motor speed is less than a certain value, and as a result has reached its steady-state value before falls to 0, shown in Fig.2(I). Whatrsquo;s more, the commutation leads to an increase in the amplitude of torque. The torque rip
剩余内容已隐藏,支付完成后下载完整资料
用PWM_ON_PWM模式
抑制无刷直流电机换相引起的脉动转矩
中国武汉海军工程大学电机工程学系 蒙广伟、雄郝、李怀树编
摘要—本文分析了无刷直流电动机采用PWM控制稳定换相的过程,证实了运用PWM模式,在换相时控制非换相相电流幅度稳定不变,并进行补偿以消除低速和高速运转下的换相转矩脉动;研究了运用三相六阶的PWM模式起动无刷直流电机的方法,并提出基于脉宽调制的PWM模式如何抑制转矩脉动,PWM控制不仅可以消除非换相期间由关断电流引起的转矩脉动,还可以补偿换相期间由换相电流引起的转矩脉动。
关键词—直流无刷电机、换相、PWM脉宽调制、转矩波动
1.前言
由于直流无刷电机结构简单、调速性能良好、功率密度高、噪音低、控制简便等优点,现已得到广泛的运用。用梯形反电动势法抑制转矩脉动和完善直流无刷电机控制性能已成为一个热点。
直流无刷电机经常运转在各种PWM模式,PWM不仅影响着电力开关的动态损耗,也影响着转矩脉动。通过直流母线波纹斩波,控制转矩脉动以稳定非换相电流幅值不变是很有效的方式,但这造成了一个更复杂的拓扑结构[式(1)—式(3)],它只适用于低速场合,通过控制非换相相电流幅值来控制转矩脉动[式(4)]。[式(5)]中分析了PWM ON模式下转矩脉动的作用,[式(1)—式(3)]中的观点是在不同的速度区间采用不同的抑制方法,但没有起到PWM的作用。目前,神经网络控制和主动自抗扰控制等的引入,能达到抑制转矩脉动的效果,但控制算法实现起来更复杂也更难[式(9)—式(12)]。
根据直流无刷电机换相问题和PWM调制方式对系统的影响,提出了一种控制转矩脉动补偿模式—PWM_ON_PWM模式,寻求在不同的速度下通过不同的PWM调制比,来保证电机在低速和高速状态下稳定运行。该方法保留了原有的拓扑结构,显著提高了该系统的控制性能,而且很容易实现。
2.无刷直流电动机的换相过程中的电磁转矩
图1 三相无刷直流电动机及其系统图
假设直流无刷电机是三相对称Y 联接,忽略涡流和磁滞损耗,其等效电路和主要电路如图1所示,R,L分别是电阻和定子绕组电感,分别是相应阶段的绕组反电动势,分别是相应的相电流:
(1)
每相绕组的反电动势是平顶宽度大于或等于120度的梯形波,其平顶振幅是Em。当电机工作在三相六阶段120度导通模式下,电流不整流瞬间电枢绕组做电感处理。例如图中和导通,到和导通。换相时有如下关系:
(2)
假设转子机械角速度为Omega;,在换相过程中可获得的转矩如下:
(3)
很显然,从式(3)可以看出在换相期间转矩与非换相相电流成比例关系,即只要换相时非换相相电流保持不变,就可以消除转矩脉动。
3.不计采用PWM的影响和忽略电枢绕组阻抗的换相过程
假设电路从A相和B相导通变换到B相和C相导通,A相电流通过二极管逐渐衰减到零,而B相电流逐渐增大并达到稳定值。若不考虑换相过程中PWM的效果,则有如下表达式:
(4)
相对于直流无刷电动机的时间常数 ,PWM的周期可以认为是足够小的,而。因此,电枢绕组电抗可以忽略,而且每个阶段的初值和终值电流等于分别等于换相前后的电流稳定值。由公式1、2、4可得换相时的相电流如下:
(5)
则可得换相时的转矩:
(6)
通过公式5,得换相过程的A相关断时间和B相导通时间如下:
(7)
(8)
公式5—8表明,若,故两相之间的的换相不能同时完成,电机的速度低于定值,并且通过图2可知,当降到0之前,已经达到了稳定值。此外,换相导致了转矩的增加,则脉动转矩可表示成
(9)
若,则两相之间的换相可以同时完成,电机运行在一定的速度,而且通过图2,在正好降到0的时候,达到稳定值。在这种情况下,换相时,转矩不变,其值等于非换相过程的转矩。
(10)
若,电机的速度超过一定值,两相之间的换相不能同时完成,通过图2,当降到0时,并没有达到稳定,换相时转矩变小,可表示为:
(11)
图2 不同换相情况的相电流波形
4、PWM模式的换相转矩脉动补偿
通过前面的分析,换相时的转矩脉动可以通过两种方式消除,即当电机的速度低于一定值时,通过抑制导通相的电流的增长速度来抑制非换相的相电流脉动;若电机的速度超过一定值时,使换相重叠以保持保持导通相连续,在关断相的开关电源使用PWM模式来减少电流的增长速度来抑制非换相电流脉动。
假设是电平状态变量代表开启电源开关或者上桥臂对应的二极管,代表开店电源开关或者下桥臂对应的二极管。
当电机运行在低速时,在导通相运用PWM模式,关断A相并对B相进行脉宽调制,以减少换相时导通相的电流增长。该整流电路方程为:
(12)
通过公式1、2和12.,可得
(13)
则非换相的相电流为
(14)
其中是换相时导通相的脉冲占空比
通过公式12、13,则
(15)
故可得关断相的电流为:
(16)
关断相的管段时间为:
(17)
通过公式14,为了保证换相时的非换相的相电流不变,则必须满足
(18)
由于换相时,则,且电机运行在低速,则由公式14可得
- 当时, 换相时欠补偿,换相时非换相电流的幅度减小。
- 当时,换相时过补偿,换相时非换相电流的幅度增加。
把公式18代入公式17,可得当电机运行在低速时的,换相时非换相的电流达到稳定需要的换相时间为
(19)
当电机运行在高速时,在关断相运用PWM模式,导通关断相。对A相进行PWM控制,导通B相,以减少换相时非换相电流波动。整流电路方程为:
(20)
由公式1、2和20可得:
(21)
因此非换相的相电流为
(22)
其中是换相时关断相的控制脉冲占空比
由公式20和21得
(23)
因此导通相的电流为
(24)
导通相的导通时间为
(25)
为了保证换相时的非换相电流不变,则必须满足
(26)
由于换相时,则,电机运行在高速状态,从公式22可得
- 当时,换相时欠补偿,换相时的非换相电流幅度减小.。
- 当时,换相时过补偿,换相时的非换相电流幅度增加。
把公式26代入25,可知当电机运行在高速状态下时,使换相期间非换相的相电流保持不变的换相时间为
(27)
同上述分析,下臂的情况同上。
5.PWM模式降低转矩脉动
在公式[14]和[15]的基础上,一个新的PWM的控制方式—PWM_ON_PWM模式提出了,这种控制方式是在第一个30度和最后一个30度里采用PWM控制,同时保持转速在中间的60度范围内不变。该模式可以完全消除在非换相期间关断阶段出现的电流波动,并减少非换相期间的转矩波动。
PWM_ON_PWM模式是双边调制的,但单边调制的电源开关动态损耗是相等的。六开关轮流调制,系统具有更高的可靠性。该模式运用PWM控制开启电力开关,因此即使补偿并不适用于低速情况,它也可以在一定程度上抑制换相时的转矩脉动在PWM_ON_PWM模式下,不仅可以消除非换相期间的转矩脉动,而且过低速时,通过控制换相补偿时间来控制,从而减少低速时的换相转矩脉动。高速运转时,采用换相重叠保持导通相不断,通过控制换相补偿控制时间来控制关断相的脉冲占空比,从而不仅消除了非换相期间的转矩脉动,也抑制了高速运转时的换相转矩脉动。
用仿真对该方法进行验证,仿真参数如下:
在非全桥调制模式,如H_PWM-L_ON 模式,上桥臂的电源开关用PWM模式,下桥臂采用120度间隔的持续导通模式。相电流的仿真波形如图3所示,很明显非导通期间的关断相的有电流流过,且脉动频率与调制频率相同,电流幅度随调制波幅度变化,这产生了一个反转矩。
图3 H_ PWM -L_ ON的相电流波形
图4 PWM_ON_PWM的相电流波形
图4表示的是PWM_ON_PWM 模式的相电流波形,很明显非导通期间关断相没有电流流过,这与其他PWM模式相比,减少了非换相期间的转矩脉动。
图5是占空比为0.2的无补偿PWM控制,显示了低速状态下的电流和转矩波形。图6是占空比为0.4,换相补偿时间为0.0013的PWM控制,显示了低速状态下的电流和转矩波形。通过比较可得,低速状态下,通过换相补偿,几乎可以完全消除换相导致的转矩脉动。
从图3到图8可以看出,在PWM_ON_PWM模式下进行换相补偿控制,不仅能避免在非换相期间关断相的电流引起的转矩脉动,还可以有效的抑制在低速和高速运行下的换相转矩脉动。
图5 低速运行时的相电流和转矩波形
图6 低速运行时通过换相补偿的的相电流和转矩波形
图7 高速运行下的相电流和转矩波形
图8 高速运行下通过补偿控制的相电流和转矩波形
6.结论
基于对无刷直流电机换相过程和PWM控制的分析, 得出了一个换相补偿控制的PWM_ON_PWM模式,这不仅能消除非换相期间关断相的转矩脉动,还能进行转矩脉动补偿,是一个能运行在低速和高速情况下的无转矩脉动的控制系统。
参考文献
[1] S. Wang, T. Li, and Z. Wang, “Commutation torque ripple reduction in brushless DC motor drives using a single current sensor,” Electric Machines and Control, vol. 12,pp. 288-293, March. 2008.
[2] X. Zhang and Z. Luuml;, “New BLDCM drive method to smooth the torque,” Power Electronics, vol. 41, pp. 102-104, Feb. 2007.
[3] H.J. Song and C. Ick. “Commutation torque ripple reduction in brushless DC motor drivers using a single DC current sensor,” IEEE Trans. On Power Electr, vol. 19,pp. 312-319, Feb. 2004.
[4] G.H. Kim, J. Seog and S.W. Jong, “Analysis of the commutation torque ripple effect for BLDCM fed by HCRPWM-VSI,”
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[31127],资料为PDF文档或Word文档,PDF文档可免费转换为Word
您可能感兴趣的文章
- 饮用水微生物群:一个全面的时空研究,以监测巴黎供水系统的水质外文翻译资料
- 步进电机控制和摩擦模型对复杂机械系统精确定位的影响外文翻译资料
- 具有温湿度控制的开式阴极PEM燃料电池性能的提升外文翻译资料
- 警报定时系统对驾驶员行为的影响:调查驾驶员信任的差异以及根据警报定时对警报的响应外文翻译资料
- 门禁系统的零知识认证解决方案外文翻译资料
- 车辆废气及室外环境中悬浮微粒中有机磷的含量—-个案研究外文翻译资料
- ZigBee协议对城市风力涡轮机的无线监控: 支持应用软件和传感器模块外文翻译资料
- ZigBee系统在医疗保健中提供位置信息和传感器数据传输的方案外文翻译资料
- 基于PLC的模糊控制器在污水处理系统中的应用外文翻译资料
- 光伏并联最大功率点跟踪系统独立应用程序外文翻译资料
