还原敏感可降解聚合物基微球的制备研究开题报告

 2022-03-11 09:03

1. 研究目的与意义

壳聚糖无毒、具有了良好的生物相容性、可生物降解性、无免疫反应和无致癌性等优点,可安全可靠的用于药物中。

目前对壳聚糖微球释放机制的研究进展落后于壳聚糖载药微球制备与应用的研究进展,而加强壳聚糖载药微球药物释放机制的研究,有利于更好地了解药物的释放行为和释放影响因素,并对深入研究壳聚糖缓释载药体系的制备与应用具有重要意义。

核壳聚合物微球(cssp)是指由两种或者两种以上单体通过乳液聚合而获得的一类聚合物复合粒子。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究内容和预期目标

高分子微球作为功能性高分子材料,在药物的控制释放方面具有很多优势。

微球能通过调节和控制药物的释放速度从而实现药物的长效释放,同时又能保护抗癌药、蛋白质或多肽类药物不被降解,不同高分子材料制备的微球也有着不同的释放特性和生物黏附性。

然而,微球制剂技术在制备多肽蛋白质药物微球给药系统中依然存在很多问题,如制备过程中多肽、蛋白质药物易失活,包封率低,载药量小,体内外释药有较明显突释等。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 研究的方法与步骤

除传统的溶剂挥发法(复乳法)、相分离法和喷雾干燥法,以及低温喷雾提取法和超临界流体等技术,电喷雾技术(electrohydrodynamic atomization,ehda)是近年来兴起的较有应用前景的微球制备技术之一。

同轴电喷雾技术(coaxialelectrohydrodynamic atomization,ehda)是近几年来兴起的较有应用前景的微球制备技术之一。该技术可以一步法获得多壁结构微球,相比普通的单管电喷雾技术,具有以下优势:核壳结构微球能通过调节核壳材料和厚度从而控制药物的释放速度;药物包封在内核,能保护药物不被降解,改善突释;微球尺寸控制简易,能获得单分散微球,有利于改善药物释放特性;不同分层结构材料可以组合载药,实现多药释放。发挥同轴电喷雾技术优势,提供亲水性内核环境,在蛋白质药物包埋应用潜力极大,但是由于蛋白质药物众多、结构特性各异、治疗给药要求不同,如何构造具有普适性的双核结构,并进一步实现有效控制释放,还有待系统研究。

样品溶液通过雾化器进入喷雾室,这时雾化气体通过围绕喷雾针的同轴

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献

[1]Jain RA. The manufacturing techniques of variousdrug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.Biomaterials, 2000, 21(23):2475-2490.

[2]Vehring R. Pharmaceutical particle engineering viaspray drying. Pharmaceutical Research, 2008, 25(5):999-1022.

[3]Lassalle V, Ferreira ML. PLA nano- andmicroparticles for drug delivery: An overview of the methods of preparation.Macromolecular Bioscience, 2007, 7(6):767-783.

[4]Mitragotri S, Lahann J. Physical approaches tobiomaterial design. Nature Materials, 2009, 8(1):15-23.

[5]Ding L, Lee T, Wang CH. Fabrication of monodispersedTaxol-loaded particles using electrohydrodynamic atomization. Journal ofControlled Release, 2005, 102(2):395-413.

[6]Xie JW, Marijnissen JCM, Wang CH. Microparticlesdeveloped by electrohyd ro dynamic atomization for the local delivery ofanticancer drug to treat C6 glioma in vitro. Biomaterials, 2006,27(17):3321-3332.

[7]Xie J, Wang C-H. Electrospun micro- and nanofibersfor sustained delivery of paclitaxel to treat C6 glioma in vitro.Pharmaceutical Research, 2006, 23(8):1817-1826.

[8]Xie J, Wang C-H. Encapsulation of proteins inbiodegradable polymeric microparticles using electrospray in the TaylorCone-Jet mode. Biotechnology and Bioengineering, 2007, 97(5):1278-1290.

[9]Zhu XH, Wang C-H, TongYW. In vitro characterization of hepatocyte growth factor release fromPHBV/PLGA microsphere scaffold. Journal of Biomedical Materials Research PartA, 2009,89A(2):411-423.

[10] J.Adler-Moore, R.T. Proftt, Am Bisome: liposomal formulation, structure,mechanism of action and pre-clinical experience, J. Antimicrob. Chemother. 49(2002) 21–30.

[11] M.L. Etheridge,etal.,The big pictureonnanomedicine: thestate ofinvestigational and approved nanomedicineproducts, Nanomedicine 9 (1) (2013) 1–14.

[12] F. Canal,J.Sanchis, M.J.Vicent,Polymer–drugconjugates as nano-sized medicines, Curr. Opin. Biotechnol. 22(6) (2011) 894–900.

[13] A.Aubert-Pouessel,et al., In vitrostudyofGDNF release from biodegradable PLGA microspheres, J. Control. Release95 (3) (2004) 463–475.

[14] E. Igarashi, Factors affecting toxicityand efcacy of polymeric nanomedicines, Toxicol. Appl. Pharmacol. 229 (1)(2008) 121–134.

[15] T. Lammers,et al., Drug targeting to tumors: principles, pitfalls and (pre-) clinicalprogress, J. Control. Release 161 (2) (2012) 175–187.

[16]A.Puri,L.K.,B.Smith,J.H.Lee,A.Yavlovich,E.Heldman,R.Blumenthal,Lipid-BasedNanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic, Crit.Rev. Ther. Drug Carrier Syst. 26 (6) (2009) 523–580.

[17] G. Pratt, etal., Liposomal Daunorubicin: In Vitro And In Vivo Efcacy In MultipleMyeloma, Hematol. Oncol. 16 (1998) 47–55.

[18] M. Benesch,C. Urban, Liposomal cytarabine for leukemic and lymphomatous meningitis: recentdevelopments, Expert. Opin. Pharmacother. 9 (2008) 301–309.191B. Felice etal. /Materials Science and Engineering C 41(2014) 178 –195

[19] N.M.Bressler, S.B. Bressler, Photodynamic Therapy with Verteporn (Visudyne):Impact on Ophthalmology and Visual Sciences, Invest. Ophthalmol. Vis. Sci. 41(3) (2000) 624–628.

[20] M. Alam, C.T. Hartick, Extended-ReleaseEpidural Morphine (DepoDur(tm)): An Old Drug with a New Prole, Pain Pract. 5(2005) 349–359.

[21] J.E. Frampton, A.J. Wagstaff,Sucrose-Formulated Octocog Alfa A Review of its Use in Patients withHaemophilia A, Drugs 68 (2008) 839–853.

[22] L. Boehlke,J.N. Winter, Sphingomyelin/cholesterol liposomal vincristine: a new formulationfor an old drug, Expert. Opin. Biol. Ther. 6 (2006) 409–415.

[23] C.E. Swenson,et al., Liposome technology and the development of Myocet TM (liposomaldoxorubicin citrate), Breast 2 (2001) 1–7.

[24] K.A.Gelmon,etal., PhaseI Study of Liposomal Vincristine,J.Clin. Oncol.17 (1999) 697–705.

[25] R.T.P. Poon,N. Borys, Lyso-thermosensitive liposomal doxorubicin: a novel approach toenhance efcacy of thermal ablation of liver cancer, Expert. Opin.Pharmacother. 10 (2009) 333–343.

[26] B.E. Bax, etal.,Invitroand invivostudies with human carrier erythrocytesloaded withpolyethylene glycol-conjugated and native adenosine deaminase, Br. J. Haematol.109 (2000) 549–554.

[27]P.A.Dinndorf,etal.,FDAdrugapprovalsummary:pegaspargase(oncaspar)fortherst-line treatment of children with acute lymphoblastic leukemia (ALL),Oncologist 12 (8) (2007) 991–998.

[28] Y.S. Wang, etal., Structural and biological characterization of pegylated recombinantinterferon alpha-2b and its therapeutic implications, Adv. Drug Deliv. Rev. 54(2002) 547–570.

[29] S. Schreiber,et al., Maintenance Therapy with Certolizumab Pegol for Crohn's Disease, N.Engl. J. Med. 357 (2007) 239–250.

[30] F. Locatelli,L. Del Vecchio, Peginesatide as a new approach for treating anemia of CKDpatient: is it like a falling star? Expert. Opin. Pharmacother. 14 (2013)1277–1280.

[31] J.W.Singer,Paclitaxelpoliglumex(XYOTAX,CT-2103):amacromoleculartaxane,J.Control. Release 109 (1–3) (2005) 120–126.

[32] M.R. Sherman, M.G. Saifer, F. Perez-Ruiz,PEG-uricase in the management of treatment-resistant gout and hyperuricemia,Adv. Drug Deliv. Rev. 60 (1) (2008) 59–68.

[33] P.R. Hamann,et al., Gemtuzumab Ozogamicin, A Potent and Selective Anti-CD33Antibody-Calicheamicin Conjugate for Treatment of Acute Myeloid Leukemia,Bioconjug. Chem. 13 (2002) 47–58.

[34]G.A.Wiseman,etal.,RadioimmunotherapyofRelapsedNon-Hodgkin'sLymphoma withZevalin, a 9 yttrium Anti-CD20 Monoclonal Antibody, Clin. Cancer Res. 5 (1999)3281–3286.

[35] J.M. Vose, Bexxar(r): Novelradioimmunotherapy for the treatment of low-grade and transformed low-gradenon-Hodgkin's lymphoma, Oncology 9 (2004) 160–172.

[36] J. Deckert, et al., A novel anti-CD37antibody–drug conjugate with multiple antitumor, Blood 322 (2013) 3500–3510.

5. 计划与进度安排

1、查阅文献资料,完成开题报告(第1~3周)

查阅中外文献资料(关键词:核壳微球,还原敏感,接枝壳聚糖),综述国内外研究现状和发展趋势等,并进行外文资料翻译。

2、还原敏感核壳结构微球的制备研究(第4~10周)

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。