深埋特大型地下厂房爆破开挖诱发灾变机理研究开题报告

 2021-11-25 10:11

1. 研究目的与意义(文献综述)

一、 研究的目的和意义

1.1 研究的意义

爆破是工程建设的重要手段,在道路工程、水利工程、地下工程中有着重要的作用。但是,爆破过程中会产生速度极快的爆炸物和碎石,以及剧烈的震动和冲击波,会对爆炸区和爆炸影响区产生严重的破坏。尽管随着先进技术的应用,爆破技术越来越精确与先进,但是爆破工程导致的地质灾害仍然时有发生。为了保障爆破工程的安全性,对于爆破工程基础理论的研究是具有重要意义的。在爆破工程中,不同的钻孔参数、装药参数以及起爆网络会对围岩的振动特性产生不同的影响。并且,工程爆破的研究和实践存在工程条件和对象的多样化、复杂化。目前,关于爆破作用机理问题的理论研究还不够全面,与实际应用之间尚有较大差距。本文将以中国云南白鹤滩水电站地下厂房扩挖为背景,研究深埋地下洞室爆破开挖工程在不同爆破参数下对保留岩体的动力扰动作用,为类似的工程提供参考。

1.2 国内外研究现状

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究的基本内容与方案

二、研究的内容和目标

2.1 研究的内容

本文将以中国云南白鹤滩水电站地下厂房扩挖为背景,研究深埋地下洞室爆破开挖对保留岩体的动力扰动作用,目前运用较多的爆破降振方法有光面爆破和预裂爆破等,但依然无法完全消除爆破开挖对围岩的损伤破坏效应以及潜在的灾变风险。基于现场实测爆破开挖振动监测数据,采用线性回归分析的方法计算爆破开挖方量与爆心距之间的关系。根据现场实际地质条件建立ls-dyna数值模型,与现场实测数据对比分析验证数值模型的有效性后,对不同钻孔参数、装药参数及起爆网络下围岩振动特性进行系统分析。

2.2 研究的目标

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 研究计划与安排

三、进度安排

第1—3周:毕业实习,完成实习报告。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献(12篇以上)

四、参考文献

  1. 刘冬,高文学,孙宝平,刘丹卉,周世生. 既有隧道扩建爆破振动数值模拟研究[J]. 岩土力学, 2016, 37(10): 3011-3016.
  2. 陈士海, 吴建.双孔微差及长柱药包爆破振动数值模拟研究[J].爆破,2017,34(3):46-52.
  3. 刘冬, 孙宝平, 石连松, 高文学.路堑边坡岩体爆破振动数值模拟研究[J].兵工学报,2014(S2):92-95.
  4. 孙崔源, 薛里, 刘世波, 付天杰, 康永全, 郭云龙. 基坑爆破开挖对运营隧道的影响数值模拟分析[J].铁道建筑,2017(6):89-91.
  5. Wenbo Lu, Yi Luo,Ming Chen,Daqiang Shu. An introduction to Chinese safety regulations for blasting vibration[J]. EnvironmentalEarth Science,2012(67):1951–1959.
  6. Xu, G.; Zhang, J.; Liu, H. Shanghai center project excavation induced ground surface movements and deformations. Frontiers of Structure and Civil Engineering, 2018,12(1):26-43.
  7. Blackburn, J.T.; Finno, R.J. Three-dimensional responses observed in an internally braced excavation in soft clay. Journal of Geotechnical and Geo-environmental Engineering, 2007,133(11):1364-1373.
  8. Hill, K.O.; Meltz, G.M. Fiber Bragg grating technology fundamentals and overview. Lightw, Technol, 1975.15(8):1263—1276.
  9. Kersey, A.D. A review of recent developments in fiber optic sensor technology. Optic Fiber Technology, 1996,2: 291-317.
  10. Tarun, K.G. Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing. Sensors and Actuators A: Physical, 2004, 113(1): 20-38.
  11. Jones, S.C.; Civjian, S.A. Application of fiber reinforced polymer overlays to extend steel fatigue life. Journal of Composites for Construction, 2003, 7( 4): 331-338.
  12. Barrias, A.; Casas, J.; Villalba, S. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications. Sensors, 2016,16(12):748.
  13. Huang, X.; Wang, Y.; Sun, Y. Research on horizontal displacement monitoring of deep soil based on a distributed optical fiber sensor. Journal of Modern Optics, 2018, 65(2):158-165.
  14. Leung, C.K.;Wan, K.T.; Inaudi D. Review: optical fiber sensors for civil engineering applications. Materials and Structures, 2015,48(4):871-906.
  15. Lopez-higuera, J.M.; Rodriguez, C.L.; Quintela, I.A. Fiber Optic Sensors in Structural Health Monitoring. Journal of Lightwave Technology, 2011,29(4):587-608.
  16. Qiu, Y.; Wang, Q.; Zhao, H. Review on composite structural health monitoring based on fiber Bragg grating sensing principle. Journal of Shanghai Jiaotong University (Science), 2013,18(2):129-139.
  17. Lopez-aldaba, A.; Auguste, J.; Jamier, R. Simultaneous Strain and Temperature Multipoint Sensor Based on Microstructured Optical Fiber. Journal of Lightwave Technology, 2018,36(4SI):910-916.
  18. Vivien, S.; Nadine, K.; Gerhard, K.; Wolfgang, H.Field Deployable Fiber Bragg Grating Strain Patch for Long-Term Stable Health Monitoring Applications. Appl. Sci. 2013, 3, 39-54.
  19. Li, S.; Chuang, L.; Jun L.; Chunwei, Z.; Xiao, D. Strain Transfer Analysis of a Clamped Fiber Bragg Grating Sensor. Appl. Sci. 2017, 7, 188.
  20. Hu, D.; Guo, Y.; Chen, X.; Zhang, C. Cable force health monitoring of Tongwamen bridge based on fiber Bragg grating. Appl. Sci. 2017, 7, 384.
  21. Maaskant, R.; Alavie, T.; Measures, M.R. Fibre optic Bragg grating sensors for bridge monitoring. Cement and Concrete Composite, 1997, 19: 21-33.
  22. Su, H.; LI, H.; Kang, Y. Experimental study on distributed optical fiber-based approach monitoring saturation line in levee engineering. Optics Laser Technology, 2018,99:19-29.
  23. Liang, M,; Fang, X.Application of Fiber Bragg Grating Sensing Technology for Bolt Force Status Monitoring in Roadways. Appl. Sci. 2018, 8, 107.
  24. Prohaska, J.D.; Snitzer, E.; Chen, B. Fiber optic Bragg grating strain sensor in large scale concrete structures. In: Claus RC, Rogo wski RS eds. Fiber Optic Smart Structure sand Skins V.SPIE,1993,1798:286-294.
  25. der Auweraer,H.V.;Peeters,B. International research projects on structural health monitoring: an overview. Structural Health Monitoring, 2003, 2: 341.
  26. Duck,G.; Blanc,M.Arbitrary strain transfer from a host to an embedded fiber-optic sensor. Smart Materials and Structures, 2000, 9: 492-497.
  27. Dong, X. Y.; Liu, Y. Q.; Liu, Z. G. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Optics Communications, 2001,192(3-6):213-217.
  28. Cheng, Y. K.; Meng, S.J.Application of fiber bragg grating(FBG) in subgrade deformation monitoring under dynamic load. Chinese Journal of Underground Space and Engineering,2014(S2):1887-1892.
  29. Liu, Y.; Ren, G.B.; Jiang, Y. Strain-independent fiber torsion and displacement sensor based on acoustically-induced fiber grating. Optics and Laser Technology, 2018,99:271-275.
  30. Li, T.; Tan, Y.; Shi, C. A High-Sensitivity Fiber Bragg Grating Displacement Sensor Based on Transverse Property of a Tensioned Optical Fiber Configuration and Its Dynamic Performance Improvement. IEEE SENSORS JOURNAL, 2017,17(18):5840-5848.
剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。